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In the low-temperature phase of a square Ising model, we describe the inverse temperature β as a function of
the squared mass M and study the critical behavior of β (M) via the large M expansion. Using the δ expansion
by which the large mass expansion is transformed into a series exhibiting expected scaling behavior, we estimate
the critical inverse temperature βc with the help of a linear differential equation to be satisfied by the ansatz of
β (M). To improve the estimation accuracy, we independently estimate the leading correction exponent ν from
β (2)/β (1) and then use it to estimate βc, which significantly improves the accuracy.
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I. INTRODUCTION

The δ expansion introduced in [1] has been applied to var-
ious models and developed to the level that it is now effec-
tive in the estimation of critical exponents in the cubic Ising
model [2]. Due to space-time discretization, the field theo-
retic and condensed matter models share a similar form of ac-
tion and allow us to use similar method of calculations. The
Boltzmann distribution usually takes the form of exp(−βH),
where H means the energy function in a Euclidean lattice and
β stands for inverse bare coupling for field theory models or
inverse temperature in condensed matter models.

In models featuring separated phases, the playing field of
the δ expansion has so far been limited to regions of small
β < βc, where βc denotes the critical inverse temperature (or
critical inverse coupling). In this study, we apply the δ ex-
pansion method to a system in the low-temperature phase for
the first time. As an explicit example, we take up a 2D square
Ising model. The square Ising model has a long history in the
works of Ising, Onsager, Yang, and Lee, as well as many suc-
cessors [3]. Making use of exact results, we explore the δ ex-
pansion applied to a new arena of the low-temperature phase.
In this paper, we confine ourselves to the very basic points of
δ expansion, such as the estimation of ν and βc from low-
temperature expansion. Specifically, we place emphasis on
how to independently estimate ν to improve the βc estimate.

This paper is organized as follows.: In section II, we in-
troduce the estimation task by explaining low-temperature ex-
pansion and the basic strategy of our approach. In section III,
we turn to the explicit estimation of βc and the exponent ν ,
where we make an effort to improve the accuracy of the βc
estimation. We conclude in section IV with a brief summary.
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II. LOW-TEMPERATURE EXPANSION AND BASIC
STRATEGY FOR ESTIMATION

The square Ising model is controlled by the Boltzmann dis-
tribution:

exp(−β ∑
<i, j>

sis j), (2.1)

where the spin variable sn ∈ {+1,−1} is on the site n that
composes the square lattice system. Here, < i, j > means that
sites i and j are the nearest neighbor pair and the summation
should be taken over all nearest neighbor pairs.

As in the high-temperature phase, the squared mass is ex-
tracted from the two-point function at a large enough separa-
tion. At low temperature, there is non-vanishing magnetiza-
tion per site, M =< s0 >, and the two point function fluctu-
ates around M 2. At present, the large separation limit of the
fluctuation is explicitly known for cases in which the two sites
are on diagonal or parallel lines to axes [3, 4]. Here, we em-
ploy the latter case, the same as was considered in [5]. The
correlation length ξ of the fluctuation is then known as [3, 4]

ξ−1 = log(tanhβ )+2β . (2.2)

At low enough temperatures, ξ−1 = 2β −2e−2β −2e−6β/3+
· · ·. Since for the application of δ expansion the corresponding
mass squared M proves to be more convenient than ξ , we use
M defined by [6]

M = 2(coshξ−1 −1). (2.3)

From (2.2) and (2.3), the squared mass M can be expanded as
M = e2β −4+3e−2β +4e−6β +4e−10β + · · ·. Then, inversion
gives

β =
1
2

logM+
2
M

− 11
2M2 +

68
3M3 − 451

4M4 + · · · . (2.4)

This is large mass expansion at low temperature. It differs
compared to the high temperature case in that a logarithmic
term of the mass squared exists as the leading contribution.

The behavior of β (M) near the critical point βc = log(1+√
2)/2, given from (2.2) by solving ξ−1 = 0, is easily derived
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from (2.2) and (2.3). The result of expansion provides

β = βc +
M1/2

4
(1− M

24
+

3M2

640
−·· ·)+R, (2.5)

where R denotes the analytic background given by

R =
M

16
√

2
(1− 3M

32
+

19M2

1536
−·· ·). (2.6)

From the definition of critical exponent ν , ξ ∼ (β −βc)
ν and

β −βc ∼ M1/2ν . Then, we find from (2.5) that ν = 1.
The motivation behind our recent series of works is to pave

the way for a new quantitative computational method of crit-
ical behaviors from simply accessible series expansions, such
as high- and low-temperature expansions. The δ -expansion
[1, 5] provides us with a new way of handling the series
and enables the estimation of critical quantities. Suppose a
given truncated expansion of f (M) to the order N, f (M) =
∑N

n=0 an(1/M)n. The minimal result of δ -expansion needed in
this study is that it induces transformation summarized as

DN [M−λ ] =CN,λ tλ , (2.7)

where

CN,λ =
Γ(N +1)

Γ(λ +1)Γ(N −λ +1)
. (2.8)

Here, DN means the transformation that is N dependent. Note
that DN [1] = 1 and DN [M�] = 0 for positive integer �. Then,
we have

DN [ f ] =: f̄ (t) =
N

∑
n=0

CN,nantn. (2.9)

The coefficients are dependent on the truncation order N. In
the examples investigated so far, it is numerically verified that
f̄ (t) recovers in its effective region the small M behavior of
f (M) [7].

In the low-temperature phase, β (M) at large M involves
logM as manifested in (2.4). The transformation rule of the
logarithmic function can also be drawn from (2.7). For in-
stance, putting λ = ε and expanding in ε and the comparison
of coefficients of ε in the result, we find

DN [logM] =− log t −
N

∑
n=1

1
n
. (2.10)

In what follows, we use notation f> for the series expansion
of f at large M. Expansion at small M is denoted as f<. The
transformed series follows the same notation. For example,
we obtain

DN [β >] =: β̄>(t) =
1
2
(− log t −

N

∑
k=1

1
k
)

+ CN,12t −CN,2
11
2

t2 +CN,3
68
3

t3 −·· · ,(2.11)

where the last term is const× tN . We now see the behaviors of
β̄> and its derivatives with respect to log t in Fig. 1. From the
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FIG. 1. The plots of β̄> at N = 25 and its derivatives with respect
to d/d log t to the 5th order. The gray line indicates βc = log(1+√

2)/2 = 0.4406867935 · · ·.

plots, we find that β̄> gradually approaches βc but the speed
of convergence is too slow. This is because M1/2ν exists in
the second place of the expansion (2.5). If we could effec-
tively subtract the correction terms, an accurate estimation of
βc would be possible. This strategy is conveniently carried out
by setting up the differential equation approximately satisfied
by β< [2, 5].

Suppose we have no information on the exponents and let
β< = βc +∑n=1 AnMλn . Then, the δ -expansion to order N is
given by

β̄< = βc + ∑
n=1

CN,−pnAnt−pn . (2.12)

Here, the set of exponents {pn} is the subset of {λn} ob-
tained from removing the integer ones (Note that DN [M�] = 0,
(�= 1,2,3, · · ·). The analytic part R thus becomes negligible.).
Truncating the summation at order K in (2.12), the resulting
series β̄< = βc +∑K

n=1 CN,pnAnt−pn is considered ansatz to the
Kth order. It satisfies

K

∏
k=1

[1+ p−1
k

d
d log t

]β̄< = βc. (2.13)

In this linear differential equation (LDE), the highest deriva-
tive order is K. If the transformed function β̄ (K)

> shows
expected scaling, it is allowed to substitute β̄ (n)

> (n =

0,1,2, · · · ,K) into β̄ (n)
< included in the above LDE.

Now, in reality, LDE is only valid locally at a certain t due
to the truncation of expansion. Then, at teε in the neighbor-
hood of t, we have the following expansion:

K

∏
k=1

[1+ p−1
k

d
d log t

]β̄ (teε) =
K

∏
k=1

[1+ p−1
k

d
d log t

]β (t)

+
K

∏
k=1

[1+ p−1
k

d
d log t

]β (1)(t)ε

+O(ε2). (2.14)

A good adjustment of the values of unknown exponents
p1, p2, · · · should make LDE approximately valid over a wide
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region of a plateau indicating βc. Thus, we employ the ex-
tended version of the principle of minimum sensitivity [8]
(PMS) to fix the exponents and t at which βc is estimated.
The extended PMS reads

K

∏
k=1

[1+ p−1
k

d
d log t

]β̄ (n)
< = 0 (2.15)

for various sets of n. In the above LDE, unknown variables
are (t; p1, p2, · · · , pK). Hence, we need K+1 equations to esti-
mate all values. Then, the last LDE includes a 2K +1th order
derivative. At low orders, fewer derivatives exhibit scaling,
and at large orders, derivatives to several orders are available.
When the solution of the set (t∗; p∗1, · · · , p∗K) is obtained in the
scaling region, we estimate βc by

K

∏
k=1

[1+ p−1
k

d
d log t

]β̄<

∣∣∣
(t∗;p∗1,···,p

∗
K)

= βc. (2.16)

This is the basic strategy utilized in our approach. A similar
approach is taken for the estimation of ν and the improved
estimation of βc.

III. ESTIMATION

A. Naive estimation of βc

In this subsection, we present our estimation study in the
manner detailed in the previous section. In the protocol, we
treat introduced exponents as adjustable ones to satisfy the
extended PMS condition, which was adopted in [9]. Here, we
call this protocol the naive protocol.

The number of exponents in ansatz (2.12) agrees with the
order K of LDE (kLDE) to be imposed. At 1LDE, we use
ansatz β< = βc+A1Mp1 and impose [1+ p−1

1 (d/d log t)]β̄< =
βc. Then, we first consider

[1+ p−1
1 (d/d log t)]β̄ (k)

< = 0, k = 1,2. (3.1)

This set of LDEs includes derivatives to the 3rd order. By
substituting β̄>(t) into β̄<(t), we obtain the solution of the
set (t∗; p∗1). For details on the estimation process, see [5, 9].
Then, by substituting set (t∗; p∗1) into the left-hand-side of
[1+ p−1

1 (d/d log t)]β̄< = βc, we obtain the estimation of βc, as
suggested in (2.16). We also performed for 2- and 3-parameter
ansatz the same estimation protocol to the 50th order. The re-
sult is given in Fig. 2 and summarized in Table I.

The scaling behavior of the left-hand side of LDE sets in
at orders depending on the number of exponent parameters of
ansatz (in this context, see [5, 9]). At K = 1, it is no sharp tran-
sition for odd orders. For even orders, rough scaling behavior
begins to appear from the 6th order. At K = 2, the onset orders
are 11th for odd orders and 14th for even orders. At K = 3,
the orders are 19th for odd N and 22nd for even N.

As expected, increasing the number of terms in the ansatz
improves the accuracy. However, the reliability of estimates
for each K actually depends on the order N of large mass ex-
pansion, as suggested just before by the concerned function’s
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FIG. 2. Plots of naive estimation results with K-parameter ansatz
where K = 1,2,3.

behaviors. Although the convergence to the exact value of
βc is strongly indicated, at least with 2- and 3-parameters,
we would still like to improve the accuracy. As in the high-
temperature case demonstrated in [5], we turn to the estima-
tion of ν and then revisit the estimation of βc under the bias
of the estimated ν .

B. Estimation of ν

As long as the order N of a large mass expansion is big
enough, the estimation of ν = (2p1)

−1 is effective in the naive
estimation discussed above. However, a precise value can-
not be obtained at moderate orders. It seems that obtaining a
precise value of p1 would help to estimate βc since the lead-
ing correction t−p1 is effectively subtracted in LDE. To solve
this problem, we consider the function β (2)/β (1) =: fβ , where
β (�)(M) = (d/d logM)�β (M). From (2.5), we find the critical
behavior

fβ<(M) =
1

2ν
+

M1/2

4
√

2
− 3M

16
+ · · · . (3.2)

The exponent p1 appears as the leading term of the constant
and its estimation may become accurate. Writing ansatz as
fβ<(M) = p1+∑k=1 BkMqk , we obtain its δ expansion, giving

f̄β<(t) = p1 + ∑
k=1

CN,qk Bkt−qk . (3.3)

The truncated series at t−qK satisfies the following LDE:

K

∏
k=1

[1+q−1
k

d
d log t

] f̄β< = p1. (3.4)

As in the previous section, the above LDE should be valid
at certain t and the estimation of p1 requires the optimal set
(t∗;q∗1, · · · ,q∗K). The set is determined by the extended PMS.

Now, we attempt to estimate p1 from the large mass expan-
sion obtained from (2.4)

fβ>(x) =
4
M

− 28
M2 +

208
M3 − 1616

M4 + · · · . (3.5)
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FIG. 3. Plots of p1 = 1/(2ν) = 0.5 estimate. 1p (2p, 3p) denotes the
result in the 1 (2, 3)-parameter ansatz.

We substitute f̄β> into f̄β< in the derivatives of (3.4),

∏K
k=1[1+ q−1

k (d/d log t)] f̄ (�)β< = 0 (� = 1 ∼ K + 1). The solu-
tion determines the optimal set (t∗;q∗1, · · · ,q∗K) and the substi-
tution into (3.4) provides the p1 estimate. The result is shown
in Fig. 3 and summarized in Table II.

The quality of the series of f̄β is lower than that of β̄ .
In the 1-parameter ansatz, the orders at which the solution
(t∗;q∗1) is found at the rough scaling region (we call such so-
lutions gproperh) are 17th for odd order and 20th for even
order. In the 2-parameter ansatz, the behavior characteristic to
2-parameter ansatz appears at the 19th (for odd) and the 20th
(for even) orders and proper solution sets in from the 27th (for
odd) and the 30th (for even) in the 3-parameter ansatz.

This quality difference affects the estimation accuracy at
low orders. For the same given orders, the estimate from f̄β is
slightly more accurate than the estimate from β̄ . As the order
grows, the estimate from f̄β improves more and more. As for
the relation between the accuracy and the number of param-
eters, a positive correlation is clearly confirmed. The main
finding of this experiment is that the estimation of critical ex-
ponent ν is better in fβ .

C. Improved estimation of βc

In this subsection, we experimentally investigate the best
way to estimate βc. In addition to the naive way presented
in the subsection A, we here examine two ways: (i) using
p1 estimated from f̄β , with the rest of the exponents ad-
justed under the extended PMS as usual, and (ii) using ex-
actly known values of exponents pi for all exponents included
in the ansatz. For example, at K = 2, we simply substitute
p1 = 1/2, p2 = 3/2, and at K = 3, we substitute in addition
p3 = 5/2. This prescription supplies us the standard reference
of estimation accuracy.

As shown in Fig. 4, in the 1-parameter cases, both prescrip-
tions (i) and (ii) provide better estimates than the naive one,
with (i) yielding the best estimates among the three. In the
2-parameter cases, we first note that the used p1 value is the
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FIG. 4. Plots of βc estimates. 1p (exact) means the result under the
substitution p1 = 1/2 (prescription (ii)). 1p (naive) means the result
under the naive prescription. 1p (1p-imp) means the result under the
substitution p1 = p∗1, where p∗1 is estimated in 1-parameter ansatz of
f̄β< (prescription (i)).
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FIG. 5. Plots of βc estimates. 2p (exact) means the result under
substitution p1 = 1/2 (prescription (ii)). 2p (naive) means the result
under the naive prescription. 2p (2p-imp) means the result under
substitution p1 = p∗1, where p∗1 is estimated in the 2-parameter ansatz
of f̄β< (prescription (i)).

one from the 2-parameter ansatz of f̄< (see Fig. 5). The result
is that the whole trend is the same as that of the 1-parameter
ansatz. Still, we note that prescription (i) becomes the best
one from the 22nd order. In the 3-parameter cases, we ex-
amined two versions of prescription (i): one, using p1 from
the 2-parameter ansatz of f̄<, and two, using p1 from the 3-
parameter ansatz of f̄<. In the latter case, stable estimation
sets in from the 30th order (see Fig. 6). In 2- and 3- pa-
rameter ansatz, prescriptions (i) and (ii) resulted in competing
estimates, and numerical Table III is necessary for discussion.

From Table III, we find in the 2-parameter case that from
moderate orders, or as the order grows higher, the best es-
timation is realized in prescription (i), where p∗1 at Kν = 2 is
substituted and p2 is adjusted to satisfy extended PMS. A sim-
ilar trend is observed in the 3-parameter case, though the 50th
order is exceptional. Though the exact reason is not known,
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FIG. 6. Plots of βc estimates. 3p (exact) means the result under
substitution p1 = 1/2 (prescription (ii)). 3p (naive) means the result
under the naive prescription. 3p (kp-imp, k = 1,2) means the result
under substitution p1 = p∗1, where p∗1 is estimated in the k-parameter
ansatz of f̄β< (prescription (i)).

we can conclude that the best estimation does not come from
the substitution of exact exponents in the ansatz; rather, the
use of the leading exponent value obtained from f̄β with ex-

tended PMS provided the best results.

IV. SUMMARY

We performed the basic task of estimating critical quantities
ν and βc and demonstrated that the large mass expansion with
δ expansion also works at the low-temperature phase. We also
found that prescription (i), the substitution of leading correc-
tion exponent p1 = 1/(2ν) estimated with f̄β under extended
PMS, provided better βc value than naive estimation of βc with
extended PMS. Moreover, the (i)-prescription delivered better
estimates than the prescription in which exact exponents in the
ansatz are used. This sheds light on the accurate estimation of
βc in the cubic model presented in citeyam2.

Encouraged with the results thus far, we intend to attempt
computation of the exponent of spontaneous magnetization
M in the present approach and additional estimation of other
critical quantities from the low-temperature phase. By these
further studies on the method of large mass expansion with δ -
expansion, its full aspects and power will be grasped. Such a
thorough examination may stimulate the improvement of the
method and help us to apply the method to more complicated
and interesting physics models.
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TABLE I. Naive K- parameter estimation results of βc = 0.4406867935 · · · via β̄ under the naive protocol.

20 25 30 35 40 45 50

K = 1 0.44243483 0.44178017 0.44152678 0.44129454 0.44119466 0.44108312 0.44103340
K = 2 0.44093637 0.44079480 0.44075068 0.44072337 0.44071252 0.44070368 0.44069980
K = 3 0.44083163 0.44071513 0.44069812 0.44069176 0.44068964 0.44068834 0.44068783

TABLE II. Kν - and K- parameter estimation results of p1 = 0.5 via f̄β and β̄ , respectively. At Kν = 1, a proper estimate appears from the 17th
for odd orders and the 20th for even orders. At Kν = 2, a proper estimate appears from the 27th for odd orders and the 30th for even orders.
At Kν = 3, a proper estimate appears from the 37th for odd orders and the 42nd for odd orders.

20 25 30 35 40 45 50

Kν = 1 0.50208109 0.50129729 0.50098433 0.50071069 0.50058813 0.50045795 0.50039751
K = 1 0.51821317 0.51317267 0.51100350 0.50882559 0.50781555 0.50660710 0.50603627
Kν = 2 0.49843886 0.50008775 0.50006051 0.50003490 0.50002454 0.50001621 0.50001244
K = 2 0.50380104 0.50199096 0.50132581 0.50085852 0.50065241 0.50046897 0.50038216
Kν = 3 0.50058851 0.50000241 0.50000213 0.50000098 0.50000066
K = 3 0.50243597 0.50064853 0.50030467 0.50015361 0.50009665 0.50005811 0.50004131

TABLE III. Relative error (βc,estimated/βc −1) in 2- parameter estimation results of βc = 0.4406867935 · · · via three prescriptions.

20 25 30 35 40 45 50

Naive 0.00056634 0.00024509 0.00014498 0.00008301 0.00005839 0.00003832 0.00002952
Exact 0.00013657 0.00006330 0.00003965 0.00002339 0.00001698 0.00001135 0.00000893
p1(Kν = 2) -0.00035963 -0.00004278 -0.00002146 -0.00001539 -0.00000959 -0.00000751 -0.00000517

TABLE IV. Relative error (βc,estimated/βc −1) in 3- parameter estimation results of βc = 0.4406867935 · · · via three prescriptions.

20 25 30 35 40 45 50

Naive 0.000328649 0.000064305 0.000025697 0.000011261 0.000006458 0.000003519 0.000002342
Exact ?0.000025312 ?0.000009856 ?0.000003990 ?0.000002217 ?0.000001156 ?0.000000759 ?0.000000455
p1(Kν = 2) -0.000216960 0.000000710 0.000002244 0.000001161 0.000000944 0.000000567 0.000000464
p1(Kν = 3) -0.000014723 -0.000001518 -0.000000711 -0.000000483 -0.000000282


