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Summary:
In recent years, due to the higher resolution of images and the spread of SNS, the ratio

of image data to total network traffic has increased remarkably. Therefore, the develop-
ment of high-efficiency image coding scheme that exceeds the conventional international
standards is expected. Recently, the next-generation international standard VVC (Versa-
tile Video Coding) is being studied, but VVC uses the same framework as the conventional
international standards that combine the intraframe/interframe prediction and the trans-
formation based on DCT. However, the Discrete Cosine Transform (DCT), which is used
as a spatial correlation removal technology in JPEG,H.265/HEVC and VVC, is not always
the optimal dictionary, i.e. set of atoms, for a specific image to be encoded. In this paper,
we propose a new learning-type image coding scheme, in which instead of a fixed dictionary
based on theDCT, the dictionaries adaptively trained for various images by sparse coding are
utilized. Sparse coding finds the atoms that compose the dictionary and the weighting coef-
ficient for each of those atoms so that the squared error when expressing the original signal
as a weighted linear sum of the atoms is minimized while satisfying the constraint condition
that the number of non-zero weighting coefficients is less than a certain number. In the
sparse coding, a high compression rate can be achieved by setting the number of non-zero
coefficients to be very small. In this paper, we propose three technologies when applying
sparse coding to image compression, an adaptationmethod that reflects the local features of
an image, a quantization method for the sparse coefficients, and an entropy coding method
for the sparse coefficients obtained by sparse coding.

First, we propose a novel multi-class dictionary design method. The small blocks (that
is, learning vectors), which compose the images, are divided into multiple classes according
to their features, and a dictionary is designed for each class. In the proposed method, the



optimum dictionary is designed by repeating the class update stage of all learning vectors
and the K-Singular Value Decomposition (K-SVD) based dictionary update stage of each
class. For image coding, the learning vectors are obtained by dividing training images into
small blocks. When encoding/ decoding, the sparse coefficients are obtained by using an
optimum dictionary from the pre-shared multiple dictionaries in the encoder and decoder
for each small block in the target image to be encoded, and they are sent to the decoder af-
ter quantization and code assign. It is clarified that the proposed method can reduce the
bit rate by up to 48 % compared to the conventional fixed classification method. Then, we
show that the probability distribution of quantized sparse coefficients depends on the corre-
sponding atom features and the number of sparse coefficients in that block, and the amount
of occurred bits can be reduced by 6% by introducing the efficient context-adaptive entropy
coding method. Finally, we also propose a quantization matrix design method that deter-
mines the quantization width of the sparse coefficient based on the relationship between
the complexity of the DCT atoms and the complexity of the atoms designed by K-SVD.
The proposed method can perform adaptive quantization of a sparse coefficient according
to the characteristics of its corresponding atom. Therefore, the perceptual image quality
has improved by about 0.3 points in most ranges of 5-stage MOS (Mean Opinion Score)
compared to the conventional uniform quantization.

The three elemental technologies established in this paper, that is, the multi-class dic-
tionary design method in sparse coding, the adaptive code assignment method for sparse
coefficients and the sparse coefficient quantization matrix design method, open the way for
the practicality of image compressionwith sparse coding. This is expected to contribute sig-
nificantly to future research and development as a new direction for learning-based image
coding schemes beyond many conventional frameworks.

Graduate School of Information and Computer Science, Chiba Institute of Technology



博士論文要旨
専攻 学籍番号 氏名

情報科学 1489501 王　冀
論文題目
マルチクラスK-SVDによるスパース表現辞書設計と

画像符号化への応用に関する研究
キーワード
画像符号化，スパースコーディング，K-SVD，OMP，マルチクラス
論文要旨
画像の持つ情報量は極めて膨大であり，効率的なネットワーク伝送や，

デバイスへの蓄積のためには，圧縮技術が必要不可欠である．現在世の
中では，画像圧縮国際標準として，静止画に対する JPEGや，動画に対す
るH.265/HEVCが，放送・通信・家電等の分野で広く用いられている．し
かしながら，近年の，画像の高精細化や SNSの普及により，画像情報が
ネットワークトラフィックに占める割合は年々著しく増加しており，さ
らなる高効率圧縮技術の開発が期待されている．

JPEGやH.265/HEVCにおいては，空間的な相関除去方法として，離散
コサイン変換（DCT）に基づく手法が継続的に採用されている．しかし
ながら，ある特定の画像を符号化対象として考えると，DCTは必ずしも
最適な辞書（すなわち，基底の集合）とはならない．本論文では，スパ
ースコーディングを用いて様々な画像に対して辞書学習を行い，得られ
た辞書を用いて符号化を行うことで，DCTよりも優れた符号化効率の達
成を狙っている．スパースコーディングとは，原信号を，基底の重み付
き線形和で表現する際に，非ゼロ係数の個数をある一定の数以下にした
時に，原信号と復元信号の二乗誤差が最小になるように，基底及び重み
係数を求めるものであり，非ゼロ係数を極めて少数に設定することで大
幅な情報圧縮を図ることが期待できる．スパースコーディングを画像圧
縮に適用する場合， 1⃝画像の局所領域の特徴にどのように適応させるか，
2⃝スパースに分布した非ゼロ係数にどのように符号を割り当てて情報量
削減するか， 3⃝復号画像の主観画質を向上するためにはスパース係数を
どのように量子化すればよいか，を明らかにする必要がある．本論文で
はこれらの 3つの観点にフォーカスを当てて検討を行い，課題を解決す



る新手法の提案とともに，実験により提案手法の有効性を確認している．
まず第 1は，画像符号化に適したスパース表現可能な辞書設計手法に

関する取り組みである．入力データのスパース表現を可能にする辞書を
学習するための手法として K-SVD（K-Singular Value Decomposition）を用い
る．K-SVDによって設計された辞書の画像表現能力は、学習に用いる画
像データの特徴に大きく依存する．従って，入力データを複数のクラス
に分類し，クラスごとに辞書を学習する手法を採用する．しかしながら，
従来検討されているマルチクラス辞書設計方法は，事前に定められた特
徴量を用いた分類に固定されており、画像データの分類段階と辞書学習
段階の関係が考慮されていない．このため，本論文では，K-SVDによる全
学習ベクトルのクラス更新段階と各クラスの辞書更新段階を繰り返し処
理によって最適化する新しいマルチクラス辞書設計法を提案する．さら
に，設計された辞書を用いた画像符号化システムとして，学習で得られ
た複数の辞書をエンコーダとデコーダで共有し，画像中の小ブロックご
とに最適なクラスの辞書を選択してスパース表現符号化する構成法を提
案する．実験の結果，提案手法は，従来の固定的なクラス分けに比較し
て，BD-rateで最大 48％，BD-PSNRで最大 1.6 dBの符号化効率向上を達成で
きることが明らかとなった．
第 2の取り組みは，スパースに分布する非ゼロ係数のエントロピー符

号化に関する提案である．本論文では，理論的および実験的観点から重
み係数の統計的特性を詳細に分析し，その分析に基づいてスパース係数
の効率的なエントロピー符号化方法を提案する．本検討では，非ゼロ係
数のレベル値と，非ゼロ係数間のゼロラン長に着目する．詳細な解析に
より，非ゼロ係数レベル値の分布特性が，ブロック内の非ゼロ係数の個
数およびその非ゼロ係数に対応する基底の特徴によって異なることを示
し、非ゼロ係数レベル値に対しては，これらに基づくコンテキスト適応
符号化が有効であることを明らかにする．さらに，ゼロラン長は，基底
の全変動特徴に基づいて基底を並び替えることによって発生確率に偏り
を持たせることができ，効率的な符号化が可能であることを示す．実験
の結果，提案手法は従来手法と比較して，約 6％の発生ビット量削減を達
成できることを明らかにした．
第 3の取り組みは，スパース係数の新しい量子化手法に関するもので

ある．スパース表現符号化では，スパース係数を量子化して伝送する．一
般的に，JPEGやH.265/HEVCなどで用いられるDCT係数に対しては，高
周波基底に対する係数の量子化幅を，低周波基底に対する係数の量子化
幅よりも大きく設定することで，視覚的な画質を向上できる．一方で，ス



パース表現を可能とする辞書は，それに含まれる各々の基底が複雑な周
波数成分を持ち，DCT基底やDFT基底のように規則的な配列を構成して
いない．そのため，従来の検討では，どの基底に対する係数も同じ量子
化幅で量子化する手法が用いられてきた．本論文では，K-SVDによって
設計された辞書の各基底の複雑度を定義し，HEVCのDCT基底の複雑度
との類似度に基づいてスパース係数の量子化幅を決定する量子化マトリ
クスを設計する．この方法により、基底の特徴に応じて適応的に係数量
子化を実行できる．主観評価実験により，従来の一様量子化に比較して，
同じ圧縮率における 5段階MOS（Mean Opinion Score）が約 0.3ポイント向
上し，視覚的画質が改善されることが示された．
以上を総合して，本論文では，スパースコーディングを応用した学

習型画像符号化という画像圧縮への新しいアプローチの提案と，それ
を実現するための 3つの必須要素技術，すなわち，辞書設計・係数量
子化・符号割り当てについての具体的な方法を明らかにし，従来方式
を上回る符号化効率を達成可能であるという知見を得ることができた．

千葉工業大学大学院情報科学研究科
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1.1 Background of the Study

1.1.1 Environment surrounding image communication

Image communication systems transmit and receive image information over a network, in
which not only voice but also information such as images, videos, texts, and charts are con-
verted into electrical signals via image/video equipment, and they are visualized on the re-
ceiving side and perceived by the human eye. Therefore, we can regard image communica-
tion as communication via visual information.

The human visual system is the main channel for us to obtain various information, and
the need for visual information in communication is becoming more and more important.
Due to recent advances in communication technology and related services, our demands
have changed from voice-only communication to communication that includes both im-
age and voice. Image communication, which integrates voice, data, and images into one
communication service, has become a hotspot in the communication field and is becoming
more and more widely used in various industrial fields such as video conferencing, remote
medical systems, and online education.

The development of image communication is closely related to the following three fac-
tors:

1. Efficient image compression technology,

2. Reliable image communication infrastructure technology,
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3. Secure image communication technology.

I would like to clarify the first factor in terms of the amount of image information. In
relation to the second factor, I will give an overview of the development of network tech-
nologies and trends in image communication services and image processing devices. The
third factor includes important technologies such as image encryption and digital water-
marking, but it is out of the focus of this paper, so the recent trends of the first and second
factors are introduced below.

1.1.2 Amount of image information

The amount of information in an image depends mainly on the resolution of the image,
the color expression capability of each pixel and the number of frames per second (FPS) of
video to be transmitted.

With the new generation of photography and video equipment, the mainstream photo
attributes have evolved fromFullHD (2K) to 4K, and even to 8K. 2K, 4K and 8Kmeans the
number of horizontal pixels of an image. The standard pixel size for FullHD is 1920×1080,
which is about 2K×1K. The 4K resolution is doubled horizontally and vertically on top of
the 2K image, which is equivalent to 4 times the number of pixels in a 2K resolution image.
8K increases the sampling density on top of 4K, which is equivalent to four 4K images or
sixteen 2K images stitched together.

In the second half of 2012, the International Telecommunication Union (ITU-R) is-
sued the BT.2020 standard[2] for the new generation of Ultra-High Definition (UHD)
video production and display systems. BT.2020 standard significantly improved the perfor-
mance of video signal specifications, compared to the previous generation of BT.709 stan-
dard, and have promoted the further spread of 4K UHD home display equipment in the
field of television broadcasting and consumer electronics. For example, the color depth has
been increased from 8 bit in BT.709 to 10 bit or 12 bit, where 10 bit is for 4K systems and 12
bit is for 8K systems. This enhancement plays a key role in enhancing the overall image in
terms of color levels and transitions. The color gamut is also much larger than the BT.709
standard, enabling richer colors to be displayed.

The BT.2020 standard not only specifies the UHD display resolution of 3840×2160
and7680×4320with a 16:9 display ratio, but also extends the supported FPS limits to 120p,
60p, 59.94p, 50p, 30p, 29.97p, 25p, 24p, 23.976p,where p is the initial letter of “progressive
scanning”. The interlaced scanning has finally been eliminated in BT.2020, and all images
in UHD are based on progressive scanning, which is undoubtedly a historic breakthrough
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and further enhances the fineness and smoothness of UHD images.

The constant improvement in the “quality” of an image causes an exponential increase
in the amount of information generated by the image. For example, the amount of infor-
mation of uncompressed HD video is about 1 Gbit/s, while that of 4K/30P and 8K/60P
videos becomes 4 Gbit/s and 32Gbit/s respectively, which is extremely large.

1.1.3 Progress in network technology

Another trigger for the image information explosion is the acceleration of recent network
technology upgrades. At MWC in 2018, 5G has become a hot topic all over the world,
and domestic interest in 5G has become very high. 5G is abbreviated as “5th generation
mobile communication network”. Since mobile communications have long been an inte-
gral part of every aspect of our daily lives, people’s expectations for the arrival of 5G are
enormous. We can check the news almost every day, check emails on the smartphones, and
even watch sports games from around the world using iPad. These experience in daily life is
actually backed by a complete and powerful mobile network communication technology.
Without mobile network communication protocols and technologies, today’s versatile en-
tertainment, learning and work life is impossible.

With mobile network updates, the most obvious change is the increase in bandwidth,
the benefits most directly felt by the average user.

Nearly two decades ago, there was no feature-rich “smart phone” in the hands of the
people – the more common name at the time was “mobile phone/cell phone” or “hand-
phone” to distinguish it from a landline. At that time, “mobile phones” were really “simple
communication tools”, so they could hardly be used for anything other than sending and
receiving calls and text messages.

At that time, the demand formobile communication networks was limited to text mes-
saging (text transmission) and telephone (voice communication), so even a 2Gnetworkwith
a bandwidth of only 150kbps had sufficient capacity. But for larger data files such as color
pictures, 2G networks were overwhelmed.

The usage pattern of mobile phones had changed with the times, and various technolo-
gies have been installed in mobile phones. A camera was installed on the back of the mobile
phone so that it can be used as a digital camera. With the development of color screens, var-
ious types of simple mini-games on mobile phones have been enthusiastically sought after
and welcomed. For these applications, 2G networks are “insufficient” in the face of increas-
ing demand for mobile phones (sending and receiving images, downloading games, etc.).
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Therefore, a 3G network was developed. 3G networks have a bandwidth of 1 to 6 Mbps,
and the transmission speed is dramatically faster than that of 2G networks. 3G network
makes it possible to transmit color images and download games within the acceptable time.

Soon, however, there was a new demand to mobile phone. With the introduction of
smart devices, users wanted to watch videos, live streams and play games with better picture
quality on their smart mobile devices, and 3G networks had been not enough anymore for
these purposes. Then, a 4G network with a bandwidth of 10-100Mbps was developed. To-
day, 4G networks has been widespread in many countries, and enables HD quality image
transmission and video distribution.

The 5Gmobile network communication, which will become widespread in the future,
will enable us to respond to new user demands and business environments. On the other
hand, artificial intelligence algorithms are advancing day by day, and as cloud computing
becomes a mature technology, it is required to transmit a huge amount of data used for
machine learning. Machine learning, especially deep learning, has demonstrate excellent
performance in the fields of image recognition and image analysis and it has been already
familiar to us. In order to build a better machine learning system, it is necessary to acquire
a large amount of learning images and transmit them to a cloud computer. On the other
hand, the new era of 4K and 8K image quality poses new challenges for data transmission
over networks. The4Kmoving imagedata requires 30-40Mbps even after compression, and
8K moving image data requires 80-100Mbps[3].In the 5G era, it is predicted that ordinary
users will be able to use mobile networks to watch higher resolution videos, movies, and
smoother videophones. However, at the same time, the amount of data transmitted over
the network is expected to increase further, requiring new technologies that enable more
economical transmission than existing image compression technologies.

1.1.4 Trends in services and devices

In 2009, the digital TV signal in the United States completely replaced the analog TV sig-
nal; in 2012, Japan became the first Asian country to completely switch to digital TV signal;
Europe and Australia have subsequently completed the upgrade from analog to digital TV
signal. People can enjoy the visual enjoyment of full HD images without even leaving their
homes. Traditional video sharing sites, such as YouTube, have accelerated their video “pic-
ture quality” upgrade, with 4K video playback starting in 2013 and 8K options added to PC
players starting in 2015.

The upgrade of service also drives the upgrade of video image related equipment, when
the concept of 4K, 8K permeates into thousands of households, the next “growth point”
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of video service is handed over to the innovation and development of the hardware field.
Panoramacameras, drones, light field cameras andotherhardwarehavemade abreakthrough
in terms of viewing angle, shooting position, imaging method, breaking the existing image
and video in the public mind, bringing us a different visual experience.

1.2 The Need for Image Coding

1.2.1 The necessity of image coding

With the development of modern communication technology, the type and amount of im-
age information and data required to be transmitted has increased dramatically. It would be
difficult to disseminate and apply this image information without compression of them.

On the basis of the above background, the recent image environment is undergoing
“qualitative enhancement” and “quantitative enhancement”.

“Qualitative enhancement” is evidenced by three aspects. First one is the spread of 4K
and 8Khigh-resolution images and video contents, higher gradation of luminance and color
representation such asHDR is the second aspect. The third one is that multiple viewpoints
contents have become to be available such as 360° panoramic video, drone video, andmulti-
view video. The emergence of multiple video formats to match them is as well a part of this
enhancement.

As for the “quantitative enhancement”, the advent of various simple and highly func-
tional image/video applications has made it possible for ordinary users to upload the images
filmed or created by themselves (CGM: Consumer Generated Media) to the Internet and
circulate via social networking services in large quantities. The amount of video data on the
Internet is growing rapidly. Cisco Visual Networking Index 2018[4] estimates that video
data will account for 82% of internet traffic by 2022.

1.2.2 The directions of image coding

Typical image coding process is based on the flow of block division, prediction, transfor-
mations, transformation coefficients quantization, and code-assignment. This framework
has had a great influence on the subsequent international standardization of video coding,
andhas been followedup toH.265/HEVC(HEVC).Although the current terrestrial digital
broadcasting uses MPEG-2, the next generation broadcasts, mainly 4K and 8K, use HEVC
with its high compression ratio. In Internet video streaming and consumer electrical de-
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vices such as digital video cameras and Blu-ray recorders, H.264/AVC (AVC) and HEVC
are becoming more and more popular.

1.2.2.1 From how to rate “good images”

Televisionbroadcasts and storagemediause lossy compression coding, such as JPEG,MPEG-
2 andHEVC. In other words, the goal is to achieve “zero perceptual loss”, that is, each pixel
value of the decoded image is not completely coincident with the corresponding pixel value
of the original image, but there is no visual degradation from the original.

The effectiveness of these image compression methods is evaluated by how closely they
approximate the original image, the medical and artistic fields have the most stringent re-
quirements for this kind of metric, often requiring the decoded image to perfectly match
the original image. Therefore, they mainly use lossless compression, in which “original im-
age fidelity” is utilized as the evaluation metric.

However, given the limitations that can be encountered in practice in the communica-
tions field, for example due to network performance and storage device capacity, any lossless
compression is not sufficient. It is important to perform RD optimization to minimize the
degradation under a defined compression ratio. The “R” of RD optimization is the rate,
or the amount of code generated, and the “D” is the distortion of the decoded image, but
the question is what measure of “D” should be used here. In the case of “original image
fidelity” as pixel values, the distortion can be quantified by the PSNR, which is defined by
the difference between the decoded image and the original image. On the other hand, when
the visual perception is taken into account, the Structural Similarity Index (SSIM)[5], etc.,
that are compatible with human vision is more appropriate.

This research direction of optimizing visual perception for the viewer requires some ex-
pansion on existing image coding standards. For example, on the encoding side, using filters
such as the non-local means filter for noise reduction while maintaining edge information,
“Coefficient quantification matrix” and “Domain Adaptive Quantization” developed for
the “block artifact” are the typical processes. While on the decoding side, deblocking filters
to remove coding noise and super-resolution processing to improve the sharpness of blurred
images are some examples. Additionally, visual optimization improves the subjective evalu-
ation value, but may reduce the PSNR and SSIM.

In addition to “original image fidelity” and “visual perception fidelity”, another new re-
search direction “visual impression fidelity” is to pursue a kind of sensory “unity” between
the decoded image and the original image. In other words, although the data and the ap-
pearance are different from the original image, it is still good if there is no discomfort.
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There are threemain categories of codingmethods basedon “visual impressionfidelity”:
image-generating coding, flexible display-oriented coding, and entity-mining coding meth-
ods.

Image-generating coding

The idea of image-generating coding is to significantly reduce the information on the encod-
ing side and “generate” the reduced information by some methods on the decoding side.
Obviously, this kind of processing requires high computing power on both the encoding
and decoding sides, and it is difficult to make it commonplace in a short time. This kind
of research is more inclined to face the future communication environment such as more
abundant big data resources to provide reference images, faster network communication
environment to ensure high-speed search and download of resources, andmore computing
power of terminal communication equipment to provide the sufficient decoding.

Based on the above idea, the emphasis is on how to select information suitable for “scal-
ing down” at the encoding side.

One idea is to cut the color information drastically on the encoding side, and then re-
produce the image color on the decoding side with a few remaining“hints”. This applies to
a technique called “Colorization”, which is a category of techniques that includes methods
for coloring an image by diffusing color using a small quantity of color-marked informa-
tion[6, 7]. Another method is to “import” color information by searching the database for
pixel patterns with similar characteristics using grayscale components[8]. There are also
methods for color inference through deep learning of large-scale pairing of monochrome
and color images[9]. Compared to the latter two, the former requires some additional color
cueing information in the transmitted information, but also ensures that the coloring of the
decoded image and the original image remains uniform. The latter two can achieve higher
image compression efficiency in terms of reducing amount of bits to be transmitted since
only information from the grayscale image is needed, but there is a risk of generating a com-
pletely different coloring style image from the original one, making it difficult to apply to
practical use.

Another kind of information suitable for scaling down at the encoding side is the spa-
tial information, known as resolution, of the image itself. From an informatics point of
view, image down sampling is approximately equivalent to a low-pass filtering of the image.
For example, the use of wavelet transform down sampling is, in essence, to delete the high-
frequency information in the original image, and the remaining low-frequency information
forms a smaller image. The downscaled images are very efficient for compression. The orig-
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inal image is downscaled on the encoding side, and the downscaled image is encoded and
transmitted over the network. The lower resolution of the image to be encoded makes it
suitable for even narrower bandwidth networks. On the decoding side, the reduced image
is decoded and reconstructed to the resolution of the original image using super-resolution
technology. This method enables high-resolution image transmission with a low bit rate.
In fact, some of the existing 4K and 8K image transmission is made use of this kind of tech-
nique[10]. Incidentally, some 4KTVs out there use similar techniques to enlarge the image
when displaying 2K sources.

Similar to the above idea of using super-resolution images for coding is texture synthe-
sis coding. Texture synthesis coding focuses the efficient representation for the large region
consist of complex textures contained in an image to be coded. The texture region is rep-
resented by repeating the basic pattern, even if it is composed of a complex combination
of various frequency components. Taking advantage of this property, the encoder extracts
a smaller partial region, which is called a “patch” from a large texture region, encodes the
patch, and transmits to the decoder. In the decoder, the large texture area is reconstructed
byperforming texture synthesis using thedecodedpatch[11]. Since thehuman eye is not sen-
sitive to changes in texture details, this technique can produce an image which gives similar
visual impressionwith the original image. However, themethod of selecting an appropriate
patch has not been sufficiently researched, and there are still problems in putting the texture
coding into practical use.

Flexible display-oriented coding

With the spread of Internet of Things (IoT) and 5G devices and the advancement of flexi-
ble display material technology, the viewing environments of video are diversifying, and the
need for image coding technology that can flexibly respond to different viewing environ-
ments is increasing.

The Scalable Extension of HEVC (SHVC)[12] allows us to decode images at different
bitrates, frame rates, and resolutions from a single compressed bitstream, therefore SHVC
can flexibly adapt to many viewing environments with various network speeds and various
display resolutions.

However, SHVC is not sufficient for adapting to displays with various screen aspect
ratios and for non-rectangular displays. One approach to solve this problem is a content
scalable video coding. In other words, only non-important objects are compressed spatially
and temporally without any visual impression degradation, while important objects in the
image are preserved. Some techniques such as seam carving[13] are applied to implement
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the content scalability.

1.2.2.2 From employing AI and machine learning

In addition to the expansion of research directions brought about by the change of im-
age evaluation standards, the rapid progress of artificial intelligence and machine learning-
related technologies, such as deep learning, has also impacted image coding technology in
recent years. Some attempts to combine it with existing standards are also very common.

The encoding side of traditional image compression mainly consists of four steps: pre-
diction, transformation, quantization, and encoding, which contain a large number of vari-
ables that need to be controlled in the actual application process, and how to decide which
variables to use for different encoding targets has become a difficulty. To achieve specific
algorithm tuning by manual effort can almost be seen as an impossible task, so using com-
puters to automatically perform algorithm optimization and fine-tuning is a worthwhile
direction to try.

Convolutional neural network (CNN) technology enables the analysis and pre-diction
of the target image by constructing deep neural networks throughmulti-layer stacking of fil-
ters with several different features. As its reliability has been widely proven in recent years,
several attempts have beenmade to combine it with image coding techniques, themost rep-
resentative of which is the application to “divisionmode decision” and “intra-frame predic-
tion mode decision”.

In the image coding standard, for the target image, the image should first be divided into
different-sized blocks according to its local features. This division is not purely based on the
statistical features of the pixels in the image, but should take into account the amount of
entropy generated by different divisionmodes, and select the mode with the lowest entropy
on the premise of guaranteeing the decoded image quality. This undoubtedly requires a lot
of computation time. Reference [14] proposed a method to determine the division mode
using CNN for this problem. By using a large number of data sets such as entropy gener-
ated by Coding Unit (CU) in different modes, and by pre-training the CNN, the neural
network has the ability to infer the entropy generated by different division modes from the
image features and then determine the optimal division mode, which achieves more than
50% acceleration without degrading the performance of the whole coding architecture.

The conventional predictionmethod employed as the international standard is achieved
by adaptively switching several prediction patterns that are predefined in advance. Taking
the intra-prediction as an example, AVChas 9 prediction patterns andHEVChas 35 predic-
tion patterns for a block to be predicted, of which the prediction pattern that best approx-
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imates the target block is used. However, the accuracy of approximation is limited because
the prediction patterns are predetermined. Using CNN, there is a possibility of generat-
ing accurate predictions that cannot be achieved by such predefined patterns[15] . More
concretely, it is enough to prepare a large number of pairs of predicted blocks (true values)
and their encoded neighbor pixels, and to learnCNNparameters so that neighbor pixels are
used as CNN inputs and the CNNoutput approximates the true value asmuch as possible.

This idea can be extended to inter-frame predictions as well. Jimbo et al.[16] usedCNN
to learn a transformation matrix for estimating the target block by deforming the blocks in
the frames before and after the target block. This transformation matrix can achieve not
only conventional motion compensation, but also prediction that compensates for trans-
lation, scaling, and blur at arbitrary accuracy, and achieves better prediction performance
than HEVC.

Discrete Cosine Transform (DCT) is used for linear transformation of image in the ex-
isting international standards, because the processing framework using DCT atoms is con-
sidered to be more “stable” in terms of good transformation efficiency for different kinds of
images. In other words, although theDCT atoms has achieved a good balance between gen-
erality and efficient signal expression from a statistical point of view, it is not necessarily the
optimal solution for a specific image coding target. Bryt and Elad have discussed this point
of optimization[17]. They have proposed amore efficient image compressionmethod using
K-Singular Value Decomposition (K-SVD)[18], which uses sparse coding and Orthogonal
Matching Pursuit (OMP)[19] to develop dedicated optimized atoms for a specific type of
image. This approach offers the possibility to go beyond the compression efficiency of the
DCT atoms.

In addition to the optimization explorations on the above-mentioned two steps of pre-
diction and transformation, Takamura has conducted a study[20] on the use of theGenetic
Algorithm for the integrated optimization of orthogonal transformation, quantization, and
intra-loop filter. The goal of his study is to automate the variables in the whole process of
traditional compression coding. It is demonstrated that automatic optimization of such
large-scale variables is possible with high performance computing power and parallel pro-
cessing, such as Graphic Processing Unit (GPU) technologies.
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1.3 Position and Purpose of This Study

1.3.1 Motivation

Image coding technology is one of the key technologies for communication services, broad-
casting andmany storage devices. JPEGandH.264/AVCarewidely used formany currently
provided image and video services. H.265/HEVC, the latest international standard, is also
spreading as a coding scheme for ultra-high resolution video. The transformation process
for expressing an image to be encoded as a weighted linear sumof the atoms is one of the key
technology elements for image compression. Most of the conventional image coding stan-
dards adopt transforms based on DCT. This is because DCT gives a good approximation
of the Karhunen-Loeve transform (KLT) under the condition that there is high correlation
among neighboring pixels, which is a known statistical property ofmany natural images and
videos. However, DCT is not efficient enough towell represent local features of each image.

1.3.2 Point of focus

In this dissertation, the focus is on the phenomenon that atoms generated by learning dic-
tionaries outperform DCT atoms in terms of feature expression diversity, and investigate
whether this atom feature diversity can optimize existing compression methods in terms of
image compression.

Recent research effort has been devoted to learning dictionaries that allow image cod-
ing to utilize adaptive transforms. As mentioned in subsection 1.2.2, one of the efficient
methods to design such dictionaries is K-SVD. It is a technique that performs singular value
decomposition on a particular set of matrices in order to design the most suitable atoms
for the set. The design concept of K-SVD is to improve the sparsity of the transformation
coefficients, or in other words, to minimize the number of non-zero coefficients under the
condition that the data restoration accuracy is guaranteed. When applied to image com-
pression, it is equivalent to reducing the number of coefficients that need to be coded while
maintaining a certain image quality i.e. keeping the approximation error below a defined
value. Given an image signal, K-SVD can derive a dictionary that well approximates each
block with a sparse combination of atoms from the set of blocks composing the image.

It is known that dictionaries generated by K-SVD are largely dependent on the features
of the training images. Therefore, the extension of K-SVD to support multiple dictionaries
is a promising approach to more efficient representations of natural images with various
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features. Here, let us call the extended K-SVD “multi-class K-SVD”. Multi-class K-SVD
adaptively selects the most suitable dictionary based on the local feature(s) of the image to
be encoded. Therefore, the multi-class K-SVD dictionary will enable more efficient image
representation than the traditional DCT dictionary.

In this thesis, I focus on three issues when applying a dictionary designed bymulti-class
K-SVD to image coding, that is, a multi-class dictionary design algorithm suitable for image
coding, a sparse coefficient quantization technique that minimizes visual distortion, and an
efficient entropy coding method for the quantized sparse coefficients.

1.3.3 Learning type base generation

In order to design multiple dictionaries, it is necessary to classify the learning data available
in terms of characteristics. Various approaches such as edge directionality and pixel value
variance have been studied as local features suitable for classification. As examples for im-
age coding application, some classification methods based on intra prediction mode and
intra/inter prediction residual power of the coding unit in H.264/AVC or H.265/HEVC
have already studied.

It has been clarified that multi-class K-SVD gives better coding performance than sin-
gle class K-SVD (i.e. with one dictionary). However, conventional studies on multi-class
K-SVDuse predetermined classification schemes for dictionary design, and do not consider
the relationship between the classification stage and the dictionary training stage. There-
fore, there still remains the potential for improvements in coding efficiency by combining
dictionary training and classification optimization.

1.3.4 Quantization and code assignment

When applying the dictionaries that enable sparse representation to image compression, it
is necessary to quantize the non-zero weighting coefficients, which are distributed in sparse,
according to the target compression rate. Quantization is a lossy process, and the method
of determining the quantization width for each sparse coefficient has a great effect on im-
age quality. In the traditional international standards, the quantizationwidth is determined
by using the ”quantization matrix” designed by the frequency characteristics of the atoms
in DCT dictionary. However, the atoms included in the dictionaries designed by K-SVD
are not composed of regular frequencies like FFT and DCT, and have complicated char-
acteristics in which various frequency components are mixed. It has not yet been clarified
what kind of quantization width should be used to quantize the weighting coefficients cor-
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responding to such complicated atoms.

In addition, it is necessary to assign a code to each quantized sparse coefficient before
transmission. Since DCT is used for image transform in the traditional international stan-
dard, non-zero coefficients have the characteristic of concentrating on the low frequency
atoms with high probability. Utilizing this characteristic, various methods based on zigzag
scan have been applied as the conventional code assignment method. However, since the
atoms consisting of complex frequency components are randomly arranged in the dictio-
nary designed by K-SVD, the conventional code assignment method cannot be applied as it
is. In sparse representation coding, it is expected to develop a new code assignment method
that utilizes the characteristic that the non-zero coefficients to be encoded are extremely dis-
tributed in sparse.

1.4 Structure of This Thesis

This thesis is structured as described below.

We start with an introduction to related work in Chapter 2. This includes an introduc-
tion to the overall framework of image coding technology and the key techniques including
intra-frame/inter-frame prediction, DCT, KLT and Wavelet. Also, we introduce a review
of the international standards for image coding such as JPEG and H.265/HEVC and their
approach to image quality assessment.

Chapter 3 introduces the sparse representation of images. We will describe the dictio-
nary design concept by K-SVD and its detailed algorithm, and explain the characteristics
of the designed dictionaries by the simulation results of testing with some images. We also
show that the image representation performance of the designed dictionaries is superior to
that of the DCT dictionary, and mention the need for an approach with multi-class dictio-
nary.

In Chapter 4, we propose a new method for designing a multi-class dictionary using
K-SVD, and show its effectiveness by experiments. First, we introduce a conventional mul-
tiple dictionary design algorithm that uses classification based on the pre-determined fixed
feature. Next, we propose a newmulti-classK-SVD that obtains the optimumdictionary by
alternately repeating the class update stage and the dictionary update stage. Then, we show
amethod for applying the designedmultiple dictionaries to image compression. Finally, we
will evaluate the performance of the proposed method by simulation experiments.

The dictionary generated by the method proposed in Chapter 4 enables sparse repre-
sentation of images. That is, the transformation coefficient matrix is a sparse matrix with

13
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very few nonzero values. For transmission, it is necessary to assign binary codes to the sparse
coefficients for transmission. The main focus of Chapter 5 is to study how to assign the
binary code. To clarify that, we analyze the statistical properties of the sparse coefficients
in detail, and propose an entropy coding scheme that minimizes the amount of codes, and
confirm the effectiveness by simulation experiments.

In addition to the encoding method, another topic worth discussing for sparse coeffi-
cients is how to quantize them. We will discuss the issue in Chapter 6. In this section, we
will give a detailed description of human visual properties, and analyze the atoms in the de-
signed dictionaries from a point of frequency characteristics. Based on the analysis, we show
how to design a quantization matrix that adaptively quantizes the coefficients correspond-
ing to each atom, and verify the effectiveness from the viewpoint of decoded image quality
by experiments.

In Chapter 7, we will summarize the entire dissertation and contribution to the related
research area, and present the direction of the future study on this topic.

14
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2.1 Basic Configuration of Video Coding

The core idea of video and image compression technology is to deal with a large number of
“repetitive, correlated” elements (pixels or blocks) in the visual signal, which are considered
to constitute information redundancy, and to minimize or eliminate them through various
coding tools, that is, the working mechanism of compression algorithms.

The basic framework of the current video coding technology has been broadly formed
in the early 1990s. It can be summarized as a combination of motion compensation, intra-
frame prediction, inter-frame prediction, transformation, quantization, entropy coding,
and image pre-processing such as RGB→YUV/YCbCr color conversion, noise reduction,
image segmentation. Figure 2.1 shows the block diagram of the framework.

Furthermore, the design of the preprocessing part and the coding control functions
which are not shown in the figure are outside the framework of standards, and they are left
to the designer of the codec as an important part of the visual optimization.

The basic structure of almost video coding standards follows to this flow, but with the
improvement of IT technology and hardware architecture, each coding tool can be more
properly optimized in each application, which makes it possible to transmit video with
higher resolution and compression rate.
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Figure 2.1: Block diagram of the basic framework of traditional video compression coding

2.2 Key Technologies

Generally, a digital image signal can be regarded as a two-dimensional (or in the case of
video images, a three-dimensional) array consisting of pixel values of sampling points evenly
spaced in the horizontal and vertical directions.

Almost of images we usually handle have a property that the pixel values at close dis-
tances are similar to each other, and the image arrays containmany redundant information.

Removing such redundancy from the original signal and transforming it into informa-
tion that can be presentedwith a smaller number of bits is an essential operation for efficient
image coding. Prediction is one of the key technologies to reduce such redundancy in image
signals.

2.2.1 Prediction

The simplest prediction method for the next pixel value x is to use its previous pixel value
xn−1 as the predicted value. Isn’t it more efficient to encode the prediction error e = xn −
xn−1, which is the difference between the predicted pixel value and the original pixel value,
than to encode the original pixel value directly?

Although it is necessary to discuss the method of entropy coding as well, it is generally
known that the smaller the variance of the target signal, the lower the amount of codes can
be. In other words, if the neighboring pixels are similar to each other, the prediction error
of the previous value will be close to zero, and the variance can be expected to be sufficiently
small.

The coding method based on forward prediction was widely used in early video coding
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Figure 2.2: Placement of reference pixels used for 4 × 4 intra-prediction

schemes. Since image signals show a strong correlation not only in the horizontal direction
but also in the vertical direction, two-dimensional prediction, which utilizes the decoded
values in the upper scan line in addition to the previous value, is now common. Thus, a
two-dimensional prediction method that encodes the difference between the predicted and
predicted values in pixel units is called Differential Pulse Code Modulation (DPCM)[21,
22].

The orthogonal transformation coding, such asDCT, iswidely used as a basic algorithm
for non-reversible coding schemes because it is generally considered to have better perfor-
mance than DPCM at low bit-rates[23]. However, since the orthogonal transformation is
an independent block-by-block process, although it is effective in reducing the redundancy
in the block, it has a disadvantage that the correlation between the blocks cannot be used
simply in principle. For this reason, the combination of orthogonal transformation and
intra-frame/inter-frame prediction of each block is also attracting attention.

2.2.1.1 Intra-frame prediction

Intra-frameprediction is the term for a predictionmethodused for in-frame codingwithout
reference to other frames in the video image coding. It is also called “spatial prediction”
because it uses the correlation of pixel values in the spatial direction.

The H.264/AVC[24], which has been designed to be a highly efficient video coding
standard, has been refined to predict all pixels in the block before the orthogonal trans-
formation, and multiple prediction modes are provided to support edges and textures in
various directions.
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Figure 2.3: Prediction modes

For the Intra Prediction of 4 × 4 blocks, as shown in Figure 2.2, the prediction values
are calculated by referring to a total of 13 pixels from A to M located at the boundaries of
the surrounding encoded blocks. As shown in Figure 2.3, there are 9 predictionmodes that
define the method of calculating the prediction values (There are 9 prediction patterns for
AVC, 35 prediction patterns for HEVC[25], and 89 prediction patterns for the upcoming
VVC[26]), and the appropriate mode for each block can be selected by adaptation. For
example, in the DC prediction of Mode 2 as shown in Figure 2.2, the average of the eight
pixels fromA toD and from I to L is obtained and the average is given as the predicted value
for each of the 4×4 pixels. Since the predictions are uniformwithin a block, this prediction
mode is suitable for flat areas of the image. Other prediction modes use the values of the
reference pixels in the direction of the arrows in Figure 2.3 and are effective when there are
textures with strong directional characteristics such as edges in each direction. As for which
predictionmode is selected, itmust be encoded as additional information for eachblock, but
in the case of the same prediction mode as that of the adjacent block, only a small amount
of code is required.
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2.2.1.2 Inter-frame prediction

Video images used in television consist of about 30 frames per second, and there is a ten-
dency that the correlation between consecutive frames is high. In video image compression,
we consider the similarity between consecutive frames in the time dimension as such time re-
dundancy. To simplify the understanding, we consider the case where the object is captured
by a fixed camera (the background does not change).

The basic process is to compare the reference frame (previous frame) with the target
frame (current frame). When there is no movement of the subject, the signal residual be-
comes zerowhen the difference is taken between the two frames. This process is called inter-
frame prediction. On the other hand, if there is a movement of the subject, when the sub-
traction between frames is performed in the above manner, the difference data between the
position the object was at in the previous frame and that of the current frame is generated
and the rest of the frame becomes zero. If this situation is not solved, the difference data for
two object shape regions are generated. To further reduce the amount of residual informa-
tion, the following process is considered. First, the motion vector of the moving object is
calculated between the current frame and the reference frame (previous frame). Next, the
position of the object in the reference frame is shifted according to the motion vector to
generate a motion compensated prediction image (predicted frame). Then, the difference
between the motion compensated prediction image and the current frame image is calcu-
lated.

There are two types of inter-framepredictionmethods: unidirectional predictionwhich
uses predictions in one direction and bi-directional prediction. The pre-diction from the
previous frame to the current frame is called forward prediction and the prediction from
the future frame to the current frame is called backward prediction. When both of them
are used, it is called bi-directional prediction, and the accuracy of the prediction is enhanced
compared to unidirectional prediction. An example of inter-frame prediction is shown in
Figure 2.4. For example, the prediction from (a) to (b) is forward prediction, and the pre-
diction from (c) to (b) is backward prediction, and both of them are used in bi-directional
prediction.

2.2.2 Transform

Compared with text data, image data is extremely large. Therefore, in image coding, it is
important to develop a system with high coding efficiency, i.e., the data size for storage and
transmission is small while maintaining image quality. Therefore, for image coding, linear
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(a) previous frame (b) current frame (c) future frame

Figure 2.4: Prediction modes

transformations are used to reduce the amount of data for luminance, chrominance and
their prediction error signals. Linear transformations for image coding include Discrete
Cosine Transform (DCT)[27], which is the traditional standard, Discrete Wavelet Trans-
form (DWT)[28], which does not cause block distortion in principle, andKarhunen-Loeve
Transform (KLT)[29], which aims at least-square optimization, are well known as linear
transformations for image coding.

2.2.2.1 KLT

KLT is a method of transform coding that transforms data into a more compressible form
and removes redundancy caused by data correlation. KLT is also commonly referred to as
Principal Component Analysis (PCA)[29] or EigenvalueDecomposition (EVD). Their de-
scriptions may vary somewhat in different disciplines, but the KLT in image compression
that will be discussed here refers to methods that compute image covariance matrices, re-
taining larger eigenvalues and their corresponding eigenvectors.

The image compression procedure using KLT is as follows:

1. Data preparation

Firstly, the image to be processed will be split into N blocks of M × M size, and the data
in the image blocks will be rearranged into a column vector in the order of left to right and
top to bottom, The dimension of each column vector is M × M . There are a total of N
such column vectors, and the i-th column vector is xi.

Taking2Dvectors as an example, assuming that eachvector canbe represented as [x1, x2]T ,
then these data points can be represented in the 2D plane, and suppose they are distributed
in the ellipse shown in Figure 2.5.
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Figure 2.5: Example of a two-dimensional distribution of data

Figure 2.6: Data centering

2. Data centering

Let x = xi − x, where x is the mean vector of all column vectors, which can be seen as
shifting the center of the dataset to the origin, shown in Figure 2.6.

3. Calculating the covariance matrix

We denote the covariance matrix by C , then:

C = E[xxT ]
= E[(x − x)(x − x)T ]

= 1
N − 1

N∑
i=1

(x − x)(x − x)T

(2.1)

where x = 1
N−1

∑N
i=1 xi.
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4. Calculating the eigenvalues and eigenvectors of the covariance matrix

Denotes eigenvalues asλ1, λ2, . . . , λK , and the corresponding eigenvectors arep1, p2, . . . , pK

respectively, where K = M × M . The covariance matrix C can then be expressed as:

C = P DP T (2.2)

in which, P = [p1, p2, . . . , pK ] and D = diag(λ1, λ2, . . . , λK)

5. Decomposing and reconstructing vectors

After obtaining the covariance matrix and the eigenvector, it is possible to do a decomposi-
tion of the original vector, where the vectorx can be expressed as a linear sum of the eigen-
vectors with the following mathematical expression:

x =
K∑

i=1
cipi (2.3)

where ci = pT
i x, i = 1, 2, . . . , K .

Basedon the above equation, by retaining the larger eigenvalues and their corresponding
eigenvectors and discarding the smaller eigenvalues, the original vector can be approximately
reconstructed, which result in dimension reduction or compression.

The approximation ofx is denoted by x̂ and can be represented by the following equa-
tion.

x̂ =
r∑

i=1
cipi, r < K (2.4)

As shown in Figure 2.7, retaining c1 and discarding c2 allows one parameter to express
the information of the original two and achieve smaller errors (losing information in thep2

direction instead of the x1 or x2 direction).

2.2.2.2 Wavelet

TheWaveletTransform canbe understood in conjunctionwith the FourierTransform. The
Fourier Transform uses a series of sine and cosine functions of different frequencies to de-
compose the original function, and the transformation yields the coefficients to form the
original function using various frequencies of the sine and cosine. Similarly, the Wavelet
Transform uses a series of wavelets of different scales to decompose the original function,
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Figure 2.7: KLT of data

and the obtained coefficients form the original function using various scales of the wavelets.
Different wavelets are decomposed by shifting and scaling, where shifting is used to get the
time characteristics of the original function, and scaling is used to get the frequency charac-
teristics of the original function.

The Fourier transform of an image is the decomposition of the image signal into sine-
waves of various frequencies. Similarly, theWavelet Transform is the de-composition of the
image signal into a set of wavelets that are shifted and scaled by the original wavelet. In
the image processing world, wavelets are called image microscopes because of their multi-
resolution decomposition ability to decompose and peel away image information layer by
layer. This is achieved by using low-pass and high-pass filters.

An example of the decomposition and reconstruction process of the two-dimensional
discrete wavelet transform (DWT) for image coding is shown in Figure 2.8(a).

The decomposition process can be described as follows. Firstly, 1D-DWT is performed
on each rowof the image to obtain the low-frequency component L and the high-frequency
componentH of the original image in the horizontal direction. The low frequency compo-
nentL is obtainedby2:1 subsampling in the horizontal direction after low-pass filtering, and
the high frequency componentH is obtained by 2:1 subsampling in the horizontal direction
after high-pass filtering. Then, the vertical 1D-DWT is performed on the transformed data
to obtain LL with the low-frequency component in the horizontal/vertical directions, LH
with the horizontal low-frequency and the vertical high-frequency, HL with the horizontal
high-frequency, and the vertical low-frequency, and HH with the high-frequency compo-
nent in both horizontal/vertical directions.

The reconstruction process can be described as follows. Firstly, a one-dimensional in-
verse discrete wavelet transform is performed on each column of the transformation result,
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Figure 2.8: Block diagram of 2D-DWT for image coding

and then a one-dimensional inverse discrete wavelet transform is performed on each row of
the data obtained from the previous step. As the result, we can obtain a reconstructed im-
age. The complete reconstruction is possible by using Haar filter, SSKF, Daubechies filter,
etc. as low-pass filter and high-pass filter.

From the above processes, the wavelet decomposition of the image is a process of sepa-
rating the original signal to a low frequency component and multiple directional high fre-
quency components. In the process of decomposition, the LL component can be further
wavelet decomposed as needed until the requirements are met, as shown in Figure 2.8(b).

2.2.2.3 DCT

Discrete Cosine Transform (DCT) is similar to the Discrete Fourier Transform (DFT)[30],
but uses only real numbers. Among the general orthogonal transformations of speech and
image signal transformations, the DCT is considered as a quasi-optimal transform. In a
series of international standard recommendations for video compression coding issued in
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recent years, DCT has been used as one of the basic processing modules.

DCT is often used for lossy data compression of voice, audio, image and video signals.
This is due to the strong ”energy concentration”of thediscrete cosine transform: most of the
energy of natural signals (such as sound and images) is concentrated in the low-frequency
part of the discrete cosine transform, and the de-correlation performance of the DCT is
close to that of the KLT when the signal has statistical properties approximating those of a
Markov process.

The principles of DCT are described as follows:

1. 1D-DCT

There are a total of 8 forms of 1D DCT, of which the following is the most common one:

F (u) = c(u)
N−1∑
i=0

f(i) cos
(

(2i + 1)πu

2N

)
(2.5)

in which,

c(u) =


√

1
N

u = 0√
2
N

u ̸= 0
(2.6)

whereN is the total number of elements of the input one-dimensional data, and the coeffi-
cient c(u) makes DCTmatrix an orthogonal matrix.

2. 2D-DCT

In the above equations, transformationofone-dimensional signals has beendiscussed. How-
ever, the image is a two-dimensional signal whose values are arranged vertically and horizon-
tally. In other words, the results of 2D transformations are obtained by applying 1D trans-
formations to all the rows, and then performing 1D transformations on all the resulting
columns. This process is represented by a single expression:

F (u, v) = c(u)c(v)
N−1∑
i=0

N−1∑
j=0

f(i, j) cos
[

(2i + 1)πu

2N

]
cos

[
(2j + 1)πv

2N

]
(2.7)

where

c(u) =


√

1
N

u = 0√
2
N

u ̸= 0
, c(v) =


√

1
N

v = 0√
2
N

v ̸= 0
(2.8)
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In practice, it is common to discuss the situation where two N are equal, i.e. the data is
in the form of a square matrix, which can be written in matrix form as follows:

F =AfAT

Au,v(i, j) = cos
[

(2i + 1)πu

2N

]
cos

[
(2j + 1)πv

2N

]
(2.9)

whereA is denoted as thebase of the2D-DCT.The complexity of 2D-DCTreachesO (n4),
so the matrix for DCT transformation should not be too large. In the practical process of
imagemanipulation, thematrix needs tobedivided intoblocks, usually into8×8or16×16
size, so that the DCT transformation does not take too much time.

The formula for the 2D inverse DCT (2D-IDCT) is as follows:

f(i, j) =
N−1∑
u=0

N−1∑
v=0

c(u)c(v)F (u, v) cos
[

(2i + 1)πu

2N

]
cos

[
(2j + 1)πv

2N

]
(2.10)

Where c(u) and c(v) are same as equation (2.8). And the matrix form transformation for-
mula for 2D-IDCT is as follows:

f = A−1F (AT )−1 = AT FA (2.11)

As shown inFigure 2.9, the original8×8pixels are transformed into another8×8 array
of coefficients by DCT. And, the original 8 × 8 pixels is presented by weighted sum of the
DCT base functions, in which weighted value is a coefficient corresponding to each base.
In the coefficient matrix, the low frequency energy of the original image corresponds to the
upper left corner of thematrix and the high frequency energy corresponds to the lower right
corner of the matrix. Therefore, considering the statistical property of the image that the
correlation between neighboring pixels is high, the coefficients with large absolute values are
concentrated in the left corner. When u, v is 0, F (0, 0) in the upper left corner is a mean
value of all pixels, called theDCcomponent, orDCcoefficient, and asu, v increases, the rest
of the matrix is the AC component, or AC coefficient. It also shows that the original image
is represented by the linear sum of the basis, i.e. f (i, j) = ∑

u

∑
v F (u, v)Auv(i, j).

2.3 International Standards for Image Coding

The basic structure of the international standard was already settled in the early 1990’s. It
consists of Y/Cb/Cr color representation, entropy coding, frequency transformation and
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Figure 2.9: 2D-DCT& IDCT in practical procedures

quantization for both still and moving images, and coding tools such as intra-prediction,
inter-prediction and intra-loop filtering for moving images.

In this section, one representative international standard will be presented for still im-
ages and video compression, respectively.

2.3.1 JPEG

JPEG (Joint Photographic Experts Group)[31, 32] is an image compression format used
in almost all digital cameras. It is still used in a wide range of applications due to its good
balance of performance andprocessing load, even though its successors, JPEG2000[31] and
JPEGXR[31], have been developed. JPEG is lossy compression that takes advantage of the
properties of the human visual system, using a combination of quantization and lossless
compression coding to remove redundant information from the perceptual and statistical

27



CHAPTER 2. OVERVIEWOF IMAGE CODING TECHNOLOGY

Color space

conversion

Down

sampling
2D-DCT Quantization

Entropy

coding

Color space

inverse

Up

sampling
2D-IDCT

Inverse

quantization

Entropy

decoding

Input

image

Output

image

bit stream

Figure 2.10: Block diagram for JPEG encoding and decoding

Sampling point of Y

Sampling point of U,V

YUV 4:2:2 YUV 4:2:0YUV 4:4:4

Figure 2.11: Three sampling methods used in JEPG

viewpoints. Its encoding and decoding process is shown in Figure 2.10.

1. Color space conversion

First, the video is converted fromRGB (red, green, and blue) to a different color space called
YUV (the Y component represents the brightness of a pixel, and the U and V components
together represent hue and saturation). This coding system is useful because the human
eye is more sensitive to luminance differences than to color variations. Based on this knowl-
edge, encoders can be designed to compress images more efficiently. Since U and V have
narrower bandwidths, reducing the image size to half Y does not significantly affect human
perception.

2. Down sampling

The conversion made above makes the next step possible, which is the reduction of the U
and V components (also called “chroma subsampling”). The ratio of this chroma subsam-
pling on JPEG can be 4:4:4 (no chroma subsampling), 4:2:2 (amultiple of 2 in the horizon-
tal direction), and the most common 4:2:0 (a multiple of 2 in the horizontal and vertical
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directions), as shown in Figure 2.11. For the remainder of the compression process, Y, U,
and V are all treated individually in a very similar manner.

3. Discrete cosine transform

Next, each component of the video (Y, U, V) is generated into three regions, each of which
is subdivided into tile-like blocks with 8 × 8 pixels, which are trans-formed into frequency
space using a two-dimensional discrete cosine transform. This is done by subtracting 128
from each value in the block to make its range [−128, 127], and then using the discrete
cosine transform and rounding to obtain the result. The significant value in the upper left
corner of the resulting 8 × 8 coefficients is called the DC coefficient; the other 63 values
are called AC coefficients. The DC coefficients in all 8 × 8 blocks are then processed using
DPCM[22], and the AC coefficients in each block are processed using Run Length Encod-
ing (RLE)[33].

4. Quantization

The human eye readily recognizes subtle differences in brightness over a relatively large area,
but has difficulty discerning the exact intensity of high-frequency brightness variations.
This gives us an excellent reduction in the amount of information at the higher frequency
components. The main lossy operation in the process is to simply divide each component
in the frequency domain by a constant corresponding to the component, and then round
to the nearest integer. With this result, many of the higher frequency components are often
rounded to near zero, while many of the remaining components become small positive or
negative numbers. A general quantization matrix is:



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


Each component in thematrix ofDCT coefficients is divided by the corresponding element
in the quantization matrix.

5. Entropy coding
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The first step of entropy coding is to scan the elements of the quantized DCT coefficient
matrix from the low frequency coefficient in the upper left to the high frequency coefficient
in the lower right in a zigzag manner to make them one-dimensional. Then, for the one
dimensional data, the Huffman code[34] is assigned to (R, L), which is a pair of zero-run
length R and subsequent non-zero coefficient level L. At the beginning part of the scan,
R tends to be small and L tends to be large, while at the end part of the scan, R tends to
be large and L tends to be small. Taking advantage of this probability characteristics, an
efficient Huffman code table has been designed. In addition, a special symbol called EOB
(Endof Block) is provided for long zero runs that continue to the end of the scan. The JPEG
standard also allows the use of arithmetic encoding[35] that is mathematically superior to
the Huffman encoding. The use of arithmetic encoding generally makes the file about 5%
smaller.

At this point the JPEG compression encoding is complete, and to use the compressed
image it needs to be decoded, i.e. all the above operations in reverse.

2.3.2 H.265/HEVC

High Efficiency Video Coding (HEVC), also known as H.265 and MPEG-H Part 2, is a
video compression standard that is considered a successor to the ITU-T H.264/MPEG-4
AVC standard. Its development began in 2004 by the ISO/IEC Moving Picture Experts
Group (MPEG) and the ITU-T Video Coding Experts Group (VCEG). The first version
of theHEVC/H.265 video compression standardwas accepted as an official standard by the
International Telecommunication Union (ITU-T) on April 13, 2013, and it is considered
to achieve twice the compression efficiency ofH.264/MPEG-4AVC, that is, which equates
to a 50% reduction in bit rate for the same picture quality. It can support 4K definition and
evenup toUltraHighDefinitionTV(UHDTV)with amaximumdefinitionof 8192×4320
(8K definition)[25, 36].
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Like H.264/AVC and many other video compression codecs, HEVC is based on the
hybrid video coding architecture (see Figure 2.12), but with some new techniques added to
each part or to improve the efficiency of the original coding tool. The introduction of the
various coding features used in HEVC hybrid video coding is given below.

1. Coding Tree Unit and Coding Tree Block structures

In previous standards, such as H.264/AVC, the unit of the encoding layer is the macro-
block, which in the conventional 4:2:0 color sampling format contains one 16 × 16 lumi-
nance block and two corresponding 8 × 8 chroma blocks, while a similar core structure
in HEVC is called the Coding Tree Unit (CTU), whose dimensions is determined by the
encoder and can be larger than traditional macro-blocks. A CTU contains one luminance
Coding Tree Block (CTB) and the corresponding multiple chroma CTBs, as well as other
syntactic elements. The size of the luminance CTBs can be expressed as L × L, where L
= 16, 32 or 64, the larger the L the more efficient the compression. HEVC also supports
splitting the CTBs into smaller blocks using a tree structure and quad-tree-like signaling.

2. Code Unit (CU) and Code Block (CB)

The syntax of theCTUquadratic tree illustrates the size and location of each luminance and
chrominance CB. The root node of the quadratic tree represents the CTU. therefore, the
size of the luminance CTB is also the maximum size of the luminance CB. The way to split
the CTUs into luminance CBs and chrominance CBs is expressed together. A luminance
CB usually corresponds to 2 chrominance CBs, and the data from all three CBs, along with
the associated syntactic rules, form a coding unit. ACTBcan contain only oneCU, or it can
be divided into several CUs, each of which has a corresponding divisionmethod to indicate
how to divide it into prediction unit (PU), and each CU also has a transformation tree to
indicate how to divide it into transformation unit (TU).

3. Prediction unit (PU) and prediction block (PB)

The decision of whether the prediction takes an inter-frame or intra-framemode is made at
theCU level. The root of the PU segmentation structure is located on theCU level. Accord-
ing to the basic prediction mode decision, each luminance and chrominance CB of the CU
is further segmented into various sizes and predicted using the corresponding luminance
and chrominance PBs. HEVC supports various PB sizes from 64 × 64 to 4 × 4.

4. Transformation Unit (TU) and Transformation Block (TB)
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The predicted residuals are encoded using a block transformation, and the root of the TU
tree structure is located on the CU level. Both the luminance CB and the chrominance CB
can be transformed as oneTBoverall or further split into smaller TBs. 4 types of TB squares
are supported by HEVC: 4 × 4, 8 × 8, 16 × 16 and 32 × 32, for each of which an inte-
ger base function similar to the discrete cosine transform is defined. For the residuals of the
luminance component after intra-frame prediction, there is an alternative integer transfor-
mation scheme evolved from the discrete sine transform (DST) if the 4 × 4 transformation
is performed.

5. Motion compensation

The highest precision of the motion vector (MV) is 1/4 pixel, and samples at non-integer
pixel locations are interpolated using 7 or 8 taps filters. Same as H.264/MPEG-4 AVC,
HEVC also uses multi-reference frame mechanism. Corresponding to unidirectional and
bidirectional prediction, each PB can have 1 or 2 motion vectors.

Video compression coding is a very active area of research, although the latest coding
standard HEVC compared to the previous generation of coding standards has shown great
performance improvements, Joint Video Experts Team (JVET)’s early exploratory work to
prove that it is possible to study compression coding methods that outperform HEVC. A
series of Core Experiments are currently underway to explore coding performance, coding
complexity, etc., and emerging technologies such as deep learning are also being applied
to video coding. The industry is currently devising more efficient compression schemes
for the current standard HEVC, which will provide immersive media formats such as VR
and AR, where 8K sources are considered essential. The key to achieving this is the JVET
and MPEG’s proposed Versatile Video Codec (VVC), which, aims to achieve up to 50%
compression efficiency compared to HEVC while maintaining video quality. The official
version of the standard will be released in October 2020.

2.3.3 Coding efficiency evaluation

2.3.3.1 Image quality evaluation

Images are important information sources forhumanperception andmachinepattern recog-
nition, and their quality plays a decisive role in the adequacy and accuracy of the acquired
information. However, images will inevitably be distorted in the process of compression
and transmission. It is necessary to establish an effective image quality evaluation system
to measure the image quality. Currently, image quality evaluation can be categorized into a
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subjective evaluationmethod and an objective evaluationmethod, the former relying on the
subjective perception of experimenters to evaluate the quality of the object; the latter based
on the quantitative indicators given by the model, simulating the perceptionmechanism of
the human visual system to measure image quality.

Subjective evaluation, which is easy to understand, is the evaluation of image quality
according to the viewer’s subjective perception of the image. A common procedure is to
give the original image (reference image) and the distorted image (image to be evaluated),
and ask the viewers to rate the distorted image, and then sum up all the subjective scores
to get the Mean Opinion Score (MOS). In recent years subjective evaluation methods have
beenmorewidely used in the fields of neural network image recognition and stylemigration.

Objective evaluationof image quality is based on amathematicalmodel of the subjective
visual system of the human eye, and the quality of the image is calculated through a specific
formula. Compared to the subjective evaluation, the objective evaluation is characterized
by batch processability and reproducibility of the results, so there will be no deviation due
to human factors.

Objective evaluation algorithms can be divided into three categories according to their
dependence on reference images.

1. full-reference: it requires a one-to-one comparison with a reference image;

2. semi-reference: it only requires a partial comparison with a reference image;

3. non-reference: it does not require a specific reference image.

The full-reference algorithm is the longest studied andmost mature, and is the main way to
evaluate the merits of compression algorithms.

The quality of the image signal to be evaluated can be analyzed by the quality of the
error signal obtained after comparison with the original image signal. The degradation of
the image quality is related to the power of the error signal. Based on this, the simplest
quality evaluation algorithm is Mean Squared Error (MSE) and Peak Signal-Noise Ratio
(PSNR). The expression are as follows.

MSE =
∑M

m=1
∑N

n=1 [R(m, n) − I(m, n)]2

M × N

PSNR =10 log10
L2

max
MSE

[dB]
(2.12)
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where R(m, n) is the grayscale value of the reference image at spatial position (m, n),
I(m, n) is the grayscale value of the distorted image at spatial position (m, n), and Lmax

the peak signal, Lmax = 255 for an 8-bit grayscale image.

PSNR is the most widely used objective measurement method for evaluating image
quality, but the actual test results show that the evaluation results of PSNR do not always
reflect the evaluation results of the human eye. Images with low PSNR often feel visually
worse than images with high PSNR. This is because the human eye’s visual sensitivity to
error is not absolute, and its perception of the results varies depending on many factors.

Natural images are highly structured, as evidenced by strong correlations between the
pixels of an image, especially when they are spatially similar. These correlations carry impor-
tant information about the structure of an object in a visual scene. Wang et al. proposed a
structural distortion-based image quality evaluationmethod, called Structure-Similarity In-
dex (SSIM)[37], which argues that illumination is independent of the structure of an object,
and illumination changesmainly from luminance and illuminance changes. The luminance
information of an object’s surface is related to illuminance and reflection coefficient, and the
structure of an object in a scene is independent of illuminance and reflection coefficient is
related to the object. We can explore the structural information in an image by separating
the effect of illuminance on the object. Here, the luminance and contrast, which are related
to the structure of the object, are taken as the definition of the structural information in an
image. Since the luminance and contrast in a scene are always changing, we can obtainmore
precise results by processing the localities separately.

The SSIM indexmodels the distortion as a combination of three different factors: lumi-
nance, contrast, and structure. Using the average as an estimate of luminance, the standard
deviation as an estimate of contrast, and the covariance as a measure of structural similarity.
The mathematical derivation of SSIM is as follows.

µX = 1
H × W

H∑
i=1

W∑
j=1

X(i, j) (2.13)

σX =

 1
H × W − 1

H∑
i=1

W∑
j=1

(X(i, j) − µX)2

 1
2

(2.14)

σXY = 1
H × W − 1

H∑
i=1

W∑
j=1

(X(i, j) − µX) (Y (i, j) − µY ) (2.15)

l(X, Y ) = 2µXµY + C1

µ2
X + µ2

Y + C1
(2.16)
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c(X, Y ) = 2σXσY + C2

σ2
X + σ2

Y + C2
(2.17)

s(X, Y ) = 2σXY + C3

σ2
X + σ2

Y + C3
(2.18)

SSIM(X, Y ) = l(X, Y ) ∗ c(X, Y ) ∗ s(X, Y ) (2.19)

When C3 = C2/2, SSIM can be simplified to:

SSIM(X, Y ) = (2µXµY + C1)(2σXY + C2)
(µ2

X + µ2
Y + C1)(σ2

X + σ2
Y + C2)

(2.20)

2.3.3.2 Bjøntegaard metric

TheVideoCodingExpertsGroup (VCEG) recommended the use of theBjøntegaardmodel
to calculate the gain effect between two different coding methods[38, 39]. Because of the
advantages of PSNR, such as ease of calculation, PSNRwas also chosen to evaluate coding
distortion in the very first Bjøntegaard delta (BD) metric model. Therefore, the BDmetric
model consists of two metrics: BD-rate and BD-PSNR. The former indicates the average
percentage of bit rate that the comparison codingmethod can save over the reference coding
method with the same objective quality. The latter shows the average difference in PSNR
between the comparison coding method and the reference coding method, under the same
bit rate.

Consider that on the rate-distortion (RD) curve, the range of high bit rate regions is
larger than low bit rate regions for the same percentage. For example, the same 33% bit
rate saving is four times larger in the range of 1500-2000 kbps than in the range of 375-500
kbps[40]. Therefore, the BDmetric takes the logarithm on the bit rate axis of the RD curve
plot.

In order to implement the BD measurement model, as shown in Figure 2.13, it is first
necessary to evaluate the images processed by two different coding methods using the same
evaluation method, and plot the evaluation results as RD curves. Then, the integration
interval is confirmed, the interval in the direction of the bit rate axis is [a, b], and the interval
in the direction of the distortion rate axis is [c, d], where a, b denote the lowest and highest
values of the integration bound for the bit rate R, respectively. Similarly, c and d denote the
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range of values of the distortion rate D, as

a = max (min (R[S1]), min (R[S2]))
b = min (max (R[S1]), max (R[S2]))
c = max (min (D[S1]), min (D[S2]))
d = min(max (D[S1]), max (D[S2]))

(2.21)

It is noted that the BD measurement model does not use the measured data directly,
but generates their polynomial fit functions S′

1,S
′
2 from theRD curves in advance. Utilizing

the fitted polynomial and calculating on the integral interval, the BDmeasurements can be
obtained from the calculations according to the following equation.

BD-PSNR =
∫ b

a R[S′
1] − R[S′

2]dR
b − a

BD-rate = exp
{∫ d

c D[S′
1] − D[S′

2]dD
d − c

}
− 1

(2.22)

BD-rate is usually expressed as a percentage relative to the reference curve (i.e. S2 in Fig-
ure 2.13), so that a negative number represents a compression gain, while a positive number
represents a compression loss.

2.4 Possibility of Base Expression Beyond DCT

From the point of view of signal representation by the bases, the original signal y can be
represented in the form y = Dx, where D is the dictionary formed with the transforma-
tion bases and x is the corresponding coefficient vector. Here, it is desirable to be able to
approximate the original signal as much as possible using as few coefficients as possible.

Thus, from the viewpoint of sparse representation, the compression problem can be
transformed into an optimization problem for the sparse approximation model, the math-
ematical expression of which is as follows.

min
x

∥x∥0, s.t. ∥y − Dx∥2 ≤ ε (2.23)

whereεdenotes themaximumallowable error, and∥l∥p denotes thenormoperation,which
is equivalent to counting the number of non-zero values of vector l when p is equal to 0,
and to calculating the Euclidean distance when it is equal to 2.
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Figure 2.13: RD curve plot for two coding methods under the same quality evaluation
model

The core issue of the optimization problem is the choice of dictionary. Most solution
methods can be grouped into two categories, one of which can be categorized as methods
based on decomposition ideas, such as the Fourier transform, discrete cosine transform,
wavelet transform, and other methods chosen by traditional compression methods. The
dictionaries constructed by this type of methods are usually highly structured and easy to
design fast algorithms, however, because this type of approach requires a pre-definedmathe-
matical model of the data, it is difficult to approximate the optimal solution for compressed
objects that deviate from the pre-defined model.

In contrast to this, there is an approach based on machine learning to construct dic-
tionaries. This type of approach does not pre-model the data structure, but instead uses a
large number of training examples to generate dictionaries. Such dictionaries are usually ex-
pressed in the form of a matrix. Common dictionary learning methods include: maximum
likelihood (ML)[41], MOD[42], PCA[29, 43], and K-SVD[18] , which will be explained
in more detail later on. The disadvantage, however, is that the dictionaries themselves lack
structure, so that they are more complex to apply. In addition, the representation perfor-
mance for datawith features that deviate significantly from the characteristics of the training
data by the training-based dictionary is not as good as that by the dictionary based on the
decomposition idea.
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In summary, dictionaries based on the decomposition idea can show better expression
performance for all data structures on average, but cannot achieve anoptimal solution,while
dictionary construction ideas based onmachine learning may be able to achieve optimal ex-
pression for correspondingdata, at the cost of reduced expressiveness fornon-corresponding
data. So, is it possible to make the two categories complement each other’s strengths? If the
image can be represented with a small number of non-zero coefficients, it may lead to infor-
mation compression beyond DCT as a result.

2.5 Summary

In this chapter, we reviewed the basic architecture of currently widely used image coding
technologies and introduced some key technologies included in encoder and decoder. The
overall flowofmainstreamvideo codingwas first introduced in Section2.1, and the key tech-
niques in the flow: prediction and transformation were described in detail later in Section
2.2. The subsection on prediction introduced intra and inter-frame prediction, while the
subsection on transformation introduced three classical transformation algorithms: KLT,
DWT and DCT.

In section 2.3, the mainstream international standards, JPEG for still image compres-
sion andH.265/HEVC for video compression, were introduced, and the methods for eval-
uating image quality were explained, followed by a brief introduction of theMOCmethod
for subjective evaluation , and the widely used objective evaluation methods, PSNR and
SSIM, were also explained.

In Section 2.4, we illustrated the idea of understanding base transform processing in
terms of sparse representation, and suggested the possibility of exceeding the compression
efficiency of traditional DCT base transforms by improving the way dictionaries (set of
transform bases) are generated.
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Figure 3.1 shows a concept of sparse representation. From the point of view of matrix
factorization, as mentioned in Section 2.4, the dictionary learning process is equivalent to
decompose a given sample datasetY (each column ofY represents sample yi) into dictio-
nary matrix D and coefficient matrix X . That is,

Y ≈ D ∗ X (3.1)

where, satisfying the constraint thatX is as sparse as possible. D is called a ”dictionary”, and
each columnofD is called a base or atom;X is called a coefficientmatrix. In practical image
processing, Y is commonly composed of blocks extracted from images with the same size.
When the number of pixels in a block is n, the pixels in each block is reshaped into column
vector of size n, as shown in Figure 3.2. If m training blocks are extracted from an image,
the training data matrix Y with m columns ×n rows is composed.
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Figure 3.1: Illustration of sparse representation
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Figure 3.2: Illustration of training data Y obtained from images

Dictionary learning can have the following three objective function forms and they are
equivalent to each other.

D, X = arg min 1
2

∥Y − DX∥2 + λ∥X∥0 (3.2)

D, X = arg min
D,X

∥X∥0, s.t. ∥Y − DX∥2 ≤ ε (3.3)

D, X = arg min
D,X

∥Y − DX∥2, s.t. ∥X∥0 ≤ T0 (3.4)

where ∥X∥0 is the number of non zero coefficients in thematrixX . The first form is often
approximated using theL1 norm term instead ofL0 norm because it is difficult to solve. In
the third form, T0 is a constant value called the“sparsity constraint parameter”.

It is clear that the problem faced by dictionary learning is difficulty to solve because the
only known variable is Y , and D and X to be solved are unknown.

K-SVD is a classical algorithm for dictionary learning to solve the above problem, and it
alternately repeats updating the coefficientX under fixing the dictionaryD and updating
the dictionary D under fixing the coefficient X .

In addition, if the number K of columns of D, is less than the number n of rows of
Y , D becomes an under-complete dictionary, similar to dimension reduction by PCA; if
K is exactly equal to n, then D is called a complete dictionary, for example DCT in JPEG;
if K is greater than n, D is called an over-complete dictionary.

To illustrate the problems faced in learning over-complete dictionaries, supposewe have
an H ∗ W over-complete dictionary D as the initial dictionary, a vector y (pixel values of
the image block to be represented), and a coefficients vector x. Here, y = Dx, where y
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is a known column vector of size H and x is an unknown column vector of size W . Based
on linear algebra, we know that this is equivalent to a set of H equations containing W

unknowns. SinceW > H in case of over-complete dictionary, we have an infinite number
of solutions. In this Section, we will focus on how K-SVD can solve this problem.

This brings us to the term – ill-posed problem, i.e., there are multiple solutions that
satisfy the condition, and it is impossible to determine which one is more appropriate, so a
constraint needs to be made, adding the constraint that x is as sparse as possible, that is, x
has as many zeros as possible, i.e., norm(x, 0) is as small as possible. We will focus on how
K-SVD can solve this problem.

3.1 K-SVD Algorithm

K-SVD is an algorithm that combines the ideas of k-means andSVD.The concept ofK-SVD
design is described as follows in conjunction with the steps of the k-means algorithm:

1. The k samples in the sample set are randomly selected as centroids. This step can be
considered as the initialization of the dictionary, i.e., k bases are randomly initialized.

2. Classify the sample into the category corresponding to the nearest centroid by calcu-
lating the distance between the sample and the centroid. This step can be considered
as the initialization of the coefficientmatrix. There is only one item that is not zero in
each column of the coefficientmatrix, and the rest items are all zero. For each sample
(i.e. column vector), the index with non-zero item corresponds to its category index
of the sample.

3. For the categories that have been grouped, recalculate the centroid for each sample
category. This step can be considered as an optimization of the base matrix.

4. Reclassification according to the newly calculated centroids. This step can be seen
as an optimization of the coefficient matrix, where the base matrix, i.e., each column
vector of the dictionary, can be seen as a centroid.

5. The optimization process repeats until the distance between the centroids before and
after the update is less than the specified threshold.

The K-SVD dictionary learning algorithm is shown in Figure 3.3. Concretizing the
above idea to the algorithm of K-SVDdictionary learning, the dictionaryD needs to be ini-
tialized, either by using a pre-prepared dictionarymatrix or by randomly selecting k samples
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from the training set Y as column vectors of D. After that, fix the dictionary and obtain
the sparse coding for each sample using Eq. (3.4).

To expand on this, let’s assume that the single sample is a vectory, andwe already know
that the dictionaryD = [α1, α2, α3, α4], the goal is to compute the coefficientsx fory,
making x as sparse as possible.

Algorithm 1:K-SVD
Input: training sample Y , dictionary D(optional), coefficient matrix X
Output: dictionary D, coefficient matrix X
Initialization: If there is no initial dictionary, take K column vectors randomly

from the training sample Y ∈ Rm×n or take the first K column
vectors of the left singular matrix of Y as the base vectors of the
initial dictionary to obtain the dictionary D(0) ∈ Rm×K . Set
j = 0.

Stop Rules: The maximum number of iterations is reached, or converges to the
specified error.

whileNo Stop Rules triggered do
Sparse Coding Stage: Use OMP and D(j) generated in the previous step to

compute the coefficient matrix X , by approximating
the optimization problem:

arg minX ∥Y − DX∥2, s.t. ∥X∥0 ≤ T0
Dictionary Updating Stage: For each column in D(j), update

dk ∈ d1, d2, · · · , dk by:

1. Calculate the residual matrix Ek, Ek = Y −∑
j ̸=k djx

T
j

2. Extract the index group ωk = i|1 ≤ i ≤ n, xT
k (i) ̸= 0 and non-zero

items from xT
k as x′T

k = xT
k (i)|1 ≤ i ≤ n, xT

k (i) ̸= 0

3. Extract columns corresponding to ωk from Ek, and obtain E′
k.

4. Perform SVD on E′
k. E′

k = UΣV T , use the first column of U to
update dk = U(·, 1), x′T

k = Σ(1, 1)V T (1, ·), then replace xT
k by x′T

k .

5. Set j = j + 1

Figure 3.3: K-SVD dictionary learning algorithm
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Here we need to first find the base vector that is closest to the vector y by calculating the
point product ofα1, α2, α3, andα4 with y separately, theα corresponding to the maxi-
mum value of the product is the target. Assuming that the product ofα2 andy is maximal,
we thenuseα2 as the first base, and the initial coding vector is thenx1 = (0, b, 0, 0), where
b is an unknown coefficient.

At this point the equationy − b ∗ α2 = 0 has only one unknown parameter b, which
is equivalent to solving the least squares problem. Then reconstruct the data bymultiplying
b with α2 and compute the residual vector y′ = y − b ∗ α2. If the residual vector y′

satisfies the reconstruction error threshold range ε, then the operation is over, otherwise go
to the next step.

From the dictionary, find the nearest vectors of the remaining base vectorsα1,α3, and
α4 to the residual vector y′, assuming that α3 is the target vector, and then make the new
coding vector: x2 = (0, b, c, 0), where b and c are unknown coefficients. This leads to
the equation: y − b ∗ α2 − c ∗ α3 = 0. There are two unknown coefficients b and c in
the equation, which can be solved here using the OMP algorithm[19]. Update the residual
vector y′ = y − b ∗ α2 − c ∗ α3 again, if y′ satisfies the threshold range then it’s over,
otherwise the loop keeps going. Expanded description ends here.

At this point, we know the coding of the sample, i.e., the coefficient matrix. The next
goal is to update the dictionary as well as the coefficients. K-SVD uses a column-by-column
method to update the dictionary, i.e., when the kth base vector is updating, the other base
vectors are fixed. Suppose we currently want to update the kth base vector αk so that the
kth row vector corresponding to the coefficientmatrixX isxk, then the objective function
is as follows:

∥Y − DX∥2 =∥Y −
K∑

j=1
djx

T
j ∥2

=∥

Y −
∑
j ̸=k

djx
T
j

− dkxT
k ∥2

=∥Ek − dkxT
k ∥2

(3.5)

Where dk is the kth column vector of D, while xT
k is the kth row vector of the coefficient

matrix X . Thus, the optimization problem can be described as:

min
dkxT

k

∥E′
k − dkx′T

k ∥2 (3.6)

Here, we perform SVD on E′
k.
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E′
k = UΣV T (3.7)

When the singular values in the matrix Σ are arranged in descending order, the 1st
column vector u1 = U(·, 1) of the matrix U is taken as dk, i.e., dk = u1, and the
product of the 1st row vector of the matrix V T and the 1st singular value is taken as x′T

k ,
i.e.,x′T

k = Σ(1, 1)V T (1, ·). After obtaining x′T
k , update it correspondingly to the origi-

nal xT
k .

Updating the dictionary column by column will generate a new dictionary, and the
K-SVD algorithm iteratively updates the coefficient matrix and the dictionary until conver-
gence.

3.2 Performance of Sparse Representation

When an image is expressed under the condition that the number of non-zero coefficient
is T0 or less, the dictionary designed by K-SVD under the constraint that the number of
non-zero coefficients is less than T0 using that image can minimize reconstruction errors.
However, the characteristics of K-SVD derived dictionaries are highly dependent on the
feature of the images used in training. A dictionary trained for a specific image is optimum
for that image, but not necessarily for other images.

Figure 3.4 shows the dictionariesDbarbara,Dlena andDpepper designed by K-SVDun-
der the constraint condition of T0 = 3 for each of the three images “Barbara”, “Lena”
and “Pepper”. The atoms included in each dictionary reflect the characteristics of the im-
age used for training. For example, in the Barbara image, stripe patterns having various di-
rections present in the original image strongly appear as several atoms in the dictionary.
To measure the sparse representation performance of these dictionaries, the Peak Signal to
Noise Ratio (PSNR) values of the images reconstructed by applying the three dictionaries
Dbarbara, Dlena and Dpepper to each image, “Barbara”, “Lena” and “Pepper” are shown
in Table 3.1. Table 3.1 shows the results under the same sparsity condition of T0 = 3.
The quantization and entropy coding for coefficients are not applied because they affect
the evaluation of sparse representation performance itself. Therefore, note that the PSNR
inTable 3.1 indicates the sparse representation performance, not coding performance. That
is, first, three non-zero coefficients are obtained by repeating the projection (OMP) of the
target block vector in the image onto the basis in each dictionary three times. After that, the
target image is reconstructed using only those three coefficients, and how much it can ap-
proximate the original image was measured. For comparison, the result when each image is
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Dictionaries designed by K-SVD

The original images ((a), (b), (c)) and their corresponding dictionaries ((d), (e), (f))

reconstructed using the HEVC-DCT[44] dictionary under the same sparsity condition of
T0 = 3 is also shown. For all images, image reconstruction performance is highest with the
dictionary trained against itself. Unfortunately, using a dictionary trained against different
images seriously degrades image reconstruction performance.

For example, for the Barbara image, the other two K-SVD dictionaries yield worse per-
formance than HEVC-DCT. When applying K-SVD to image coding, the decoder has to
use the same dictionary as the encoder, so the designed dictionary itself must be encoded
and transmitted to the decoder. However, the coding and transmission of atoms for each
image every time incurs large overheads for information transmission, and is not practical
from the viewpoint of rate distortion performance.
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Table 3.1: PSNR values of the images reconstructed by the different dictionaries

Dbarbara Dlena Dpepper DHEV C−DCT

Barbara 29.59 25.53 25.08 26.20
Lena 31.70 32.95 32.27 29.51
Peppers 31.70 32.31 32.94 29.67

3.3 Single-Class Dictionary Learned from Multiple
Images

When it comes to the use of learning dictionaries for image compression, the easiest way
to think of it is to learn from the original image and use the obtained dictionary for im-
age compression. As mentioned above, learned dictionary can achieve better compression
efficiency than traditional DCT in terms of sparse representation, but it is obvious that dif-
ferent images generate different dictionaries, so the transmission needs to take into account
the additional information generated by the update of the dictionary, that is, the informa-
tion entropy of the transformation coefficients will be reduced while the entropy of the
additional information will increase, which, overall, will increase the transmission bit rate.

Another approach is to use big data, using a large number of images for learning, in or-
der to reach an improvement in the general purpose performance of the learned dictionary.
Given the computational complexity of dictionary learning algorithms, it is common prac-
tice to split the image into blocks of the same size such as 8 × 8 etc. as in existing standards
such as JPEG, and use a large number of blocks for dictionary learning.

40 full-HD (1920×1080) images are used and decomposed into 8×8 sized blocks, in
other words, using a total of about 1.3 million blocks, performed dictionary learning using
K-SVD, and the over-complete dictionary obtained with the sparsity constraint parameter
T0 = 5 is shown in Figure 3.5. Comparing the over-complete DCT dictionaries with the
same size, we found a high degree of similarity between the two.

This proves on the one hand that DCT can guarantee high compression efficiency for
different kinds of samples, and on the other hand, it is expected that as the training data
increases, the dictionaries learned in this way will be more similar to the DCT dictionaries,
i.e., the advantage of using learning dictionaries - to get an approximately optimal transform
dictionary for different images - will be lost.

In order to avoid this problem, we attempted to perform dictionary learning by pre-
grouping the training samples according to their respective local characteristics and per-
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(a) Dictionary learned by K-SVD (b) DCT

Figure 3.5: Comparison between learned dictionary and DCT

forming dictionary learning on the different groups separately, which will be described in
detail in the following chapter.

3.4 Summary

In this chapter, we described the design ideas and computational steps of the K-SVD algo-
rithm in section 3.1. After that, in section 3.2, three images were used to cross-test the per-
formance of the sparse representation. Using the three images’ owndata as training samples,
the corresponding three dictionaries are generated, additional with the DCT, for a total of
four dictionaries. The performance of these four dictionaries are measured on each image,
and the results proved that the dictionary generated from its own data has the best perfor-
mance for the corresponding image, however, for the other two images, its performance is
not satisfactory. Following in section 3.3, how learning dictionaries generated by algorithms
such as K-SVD can be applied to image compression applications is discussed, and it was
clarified that customizing dictionary design for each transmitted image is difficult to apply
in practice, while it was found that single-class dictionary generated from big data is highly
similar to DCT dictionaries in terms of visual performance. This means that such learned
dictionary is difficult to produce a breakthrough in compression efficiency compared to the
DCT dictionary.
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K-SVD is a popular technique for learning a dictionary that offers sparse representation
of the input data. Given an image signal, K-SVD can derive a dictionary that well approx-
imates each block with a sparse combination of atoms from the set of blocks composing
the image[18]. An example of this approach is the facial image codec based on the K-SVD
dictionary introduced by reference[17].

It is known that dictionaries generated by K-SVD are largely dependent on the features
of the training images. Asmentioned inChapter 3, when applyingK-SVD to image coding,
the decoder has to use the same dictionary as the encoder, so the designed dictionary itself
must be encoded and transmitted to the decoder. However, the coding and transmission of
atoms for each image every time incurs large overheads for information transmission, and is
not practical from the viewpoint of rate distortion performance.

Therefore, the extension of K-SVD to support multiple dictionaries is a promising ap-
proach to more efficient representations of natural images with various features. Here, let
us call the extended K-SVD “multi-class K-SVD”. Multi-class K-SVD adaptively selects the
most suitable dictionary based on the local feature(s) of the image to be encoded.
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4.1 Multi-class Dictionary without Class Update

4.1.1 Related work

In order to design multi-class dictionary, some researchers take approaches that share the
multiple dictionaries among an encoder and a decoder in advance. That is, first, the image
is divided into small blocks to calculate local features, then a set of blocks having similar fea-
tures is created as a class, and finally, K-SVD is executed for each class so as to createmultiple
dictionaries.

It is considered that the local features in images can be classified into similar geometric
patterns such as the direction of edges and texture features. A set of dictionaries designed for
each class is shared in advance by the encoder and decoder, and these are adaptively switched
when encoding. This eliminates the need to encode new sets of dictionary information, and
makes it possible to represent more images efficiently.

For example, in reference[45] , based on the H.265/HEVC framework, an approach
is proposed in which training samples are classified by transform unit (TU) size and a dic-
tionary is designed by K-SVD for each class. Moreover, it is described that an application-
specific dictionary can be developed for particular applications such as gaming or medical
video by changing samples in training.

Further, in reference[46], block classification based on intra-frame/inter-frame predic-
tion residual power is performed using theH.264/AVC framework, and different dictionar-
ies are designed class by class. For application other than image coding,multiple dictionaries
designs based on K-SVD also have been studied.

In reference[47] , multiple dictionaries are designed in order to sharpen the character
image. Small patches in images are classified into 13 classes based on their pixel distribution
state, and a K-SVD dictionary is designed for each class.

In reference[48], the effectiveness of class specific sparse codes is investigated in the con-
text of discriminative action classification. The local motion features for each action are
trained by K-SVD to design the action specific dictionary.

4.1.2 Multi-class dictionary for image coding

An attempt has also been made to generate a multi-class sparse dictionary based on local
features of images, aiming to apply it to image coding[49]. As shown in Figure 4.1 a large
amount of image blocks are classified into multiple classes based on their local features.
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Figure 4.1: Block diagram of Multi-class K-SVD dictionary design

Scale-invariant feature transform (SIFT)[50] is well known as a robust algorithm to de-
tect and describe local features in images. In SIFT, points lying on high-contrast regions
such as object edges or corners are chosen as the key points, as their features are invariant to
any scaling, rotation or translation of the image. However, for applications such as object
recognition and image coding, not only features of the well-detectable points but also those
of points on gradation or flat regions are still important. In other words, it is desirable to
design different bases set for points having same SIFT feature under different scale, orien-
tation and brightness. Therefore, Dense Scale Invariant Feature Transform (DSIFT)[51] is
hired instead of SIFT. In DSIFT, features are calculated under fixed points and fixed orien-
tation. Feature descriptor of DSIFT is similar to SIFT, that is, it is a spatial histogram of the
image gradient. In the neighborhood region around each key point, the spatial coordinates
are quantized into four each (4×4 sub-regions), and orientations of gradient are quantized
into eight bins. Then, a histogram consisting of 8×4×4 = 128 bins is produced for each
key point.

After the local features extracted, the large number of image blocks are classified into
multiple classes by k-means clustering[52] based on their local features. Then, K-SVD is
adopted for dictionary training. Here, a dictionary which contains multiple sparse bases is
learned.
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4.2 Proposal of Dictionary Design Method Using Class
Update

It has been clarified thatmulti-classK-SVDgives better coding performance than single class
K-SVD (i.e. with one dictionary). In references[45–49] local regions of an image are clas-
sified into multiple classes according to their characteristics, and a dictionary setting based
on K-SVD is performed class by class. However, conventional methods do not consider the
effects of classification on the subsequent processes, a dictionary learning based on K-SVD,
because thesemethods use pre-determined features in performing classification. This is, the
classifications and dictionary learning are designed independently. This raises the disadvan-
tage that image representation performance depends on what kinds of features are used for
classification. Therefore, there still remains the potential for improvements in coding effi-
ciency by combining dictionary training and classification optimization.

Here, a propose of amulti-classK-SVDmethod that takes into account the interplay be-
tween classification and dictionary design. The proposed method iterates the classification
of training samples and dictionary design for each class. In order to focus on application
to image coding, its classification takes an unsupervised approach based on the k-means
method, unlike the conventional supervised technique for such as object recognition and
image classification. In the proposedmethod, a multi-class dictionary is designed by repeat-
ing the two stages, unsupervised class update stage for all training vectors and dictionary
update stage for each class by K-SVD. Compared to conventional approaches that do not
perform classification optimization, better compression efficiency is expected.

4.2.1 Algorithm

In this section, I propose anewmulti-class dictionarydesignmethod consistingof two stages
(dictionary design and classification), and its application for image coding. For designing
multi-class dictionaries, the classification of training data and the dictionary design process
for each class are iterated. By performing iterative convergence processing, we can create
multi-class dictionaries that solve the conventional problem of what kind of local features
should be used for clustering. In the proposedmethod in this dissertation, dictionary design
including classification of training data is performed as unsupervised learning. Therefore,
the method includes a different process from the conventional dictionary design method
based on iterative updating using supervised data. In this section, a detailed algorithm to
design the multiple dictionaries based on K-SVD under unsupervised training is shown,
and how the multi-class dictionaries obtained by the proposed method can be applied to
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Figure 4.2: Block diagram of Multi-class K-SVD dictionary design with iterative class up-
date

image compression.

Figure 4.2 depicts the process flow of the proposed multi-class K-SVD dictionary de-
sign method. Since dictionary design and classification cannot be optimized at the same
time, the proposal alternately performs, for each class, the classification of training data and
dictionary design. Figure 4.3 details the steps of the multi-class dictionary design; the spe-
cific procedures in each stage are described as follows.

First, training images are divided into small blocks, and training vectors are calculated
to yield a set of m-dimensional vectors yi(i = 1, 2, ..., N) where elements of yi are pixel
values in the i-th block. N is the number of training vectors. We consider that each training
vector,yi, can be approximated as a weighted linear combination of the atoms in dictionary
Dc, where theweight coefficients of the atoms are denoted as coefficient vectorxi. Training
vectors are initially classified intoC classes,Y 1, Y 2, · · · , Y C , based on their local features
and class index for yi is determined as pi, where pi ∈ 1, 2, 3, . . . , C . As the local feature,
dense scale invariant feature transform (DSIFT)[51] is utilized because the distribution of
edge gradient direction in a block canbe expected to significantly influence the shape of basis
patches tobedesigned. The initial dictionary for each class is set to over-completeDCTwith
size K .
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Algorithm 2:Multi-class K-SVD
Initialization:
Set the number of classes C .
Set the maximum number of iterations for class update Lmax.
Set over-complete DCT to initial Dc for each class.
Classify all training vectors yi(i = 1, 2, · · · , N) into classes based on DSIFT,
Y C = ⋃

pi=c{yi}.
Set class index for yi to pi.
Set count = 0.
Dictionary Updating Stage:
for c = 1, 2, · · · , C do

Calculate dictionary Dc with K-SVD.
Class Update Stage:
for i = 1, 2, · · · , N do

for c = 1, 2, · · · , C do
Find xc

i that approximates yi by sparse coding with Dc.
New class index p̂i = arg minc ∥yi − Dcxc

i∥2
F .

if p̂i ̸= pi then
Y p̂i = Y p̂i + yi

Y pi = Y pi − yi

pi = p̂i

Set count = count + 1.
Convergence Check:
if count > Lmax or no class index is changed then

Output: Dictionary Dc(c = 1, 2, · · · , C)
else

Back to “Dictionary Update Stage”

Figure 4.3: Multi-class K-SVD dictionary design algorithm

Next, in the dictionary update stage, a dictionary that enables sparse representation for
training vectors for each class is designed. In preparation, I concatenate all training vectors
yi that belong to class c as columns of matrix Y c ∈ Rm×n(c) and similarly concatenate
coefficient vectors xi for yi to build matrix Xc ∈ RK×n(c). Here, n(c) is the number of
training vectors belonging to the c-th class. DictionaryDc and coefficientXc are obtained
by solving Eq.(4.1).

min
XC ,DC

∥Y C − DCXC∥2
F , s.t. ∀i, ∥xC

i ∥0 ≤ T0 (4.1)
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As the solver of the problem in Eq.(4.1), I use K- SVD. Specifically, as shown in Eq.(4.1),
dictionaryDC ∈ Rm×K and coefficientsXc thatminimize the square error between orig-
inal signal Y C and its reconstructed signal DcXc are found under the sparsity constraint
that the number of nonzero coefficients in each columnofmatrixXc is equal to or less than
T0. This designs C dictionaries.

After dictionary design, the class update stage is executed. Among the C kinds of dic-
tionariesDc, a new class index p̂ for each training vectoryi is re-assigned so as to satisfy the
following:

p̂ = arg min
c

∥yi − Dcxc
i∥2

F , s.t. ∥xc
i∥0 ≤ T0, i = 1, 2, · · · , N (4.2)

The above equation yields the class index that minimizes the square error between a
training vector and its reconstructed vector from the designed dictionary subject to the con-
straint on the number of nonzero coefficients. If p̂i is different from pi, the training sample
yi is moved to class Y p̂i and the class index pi of yi is replaced by p̂i.

These two steps, the dictionary update stage for each class by K-SVD and the class up-
date stage, are iterated until the convergence conditions are satisfied. The convergence con-
ditions are that the number of iterations exceeds predetermined threshold Lmax or that
none of the class indices of the training vectors change. Finally, the algorithm outputs
Dc(c = 1, 2, · · · , C) as the multi-class dictionaries.

In order to effectively represent the actual image, each dictionary to be designed should
contain one DC basis[18, 53], as has been confirmed. Therefore, one DC basis is included
in the initial dictionary for each class, and the DC basis is not changed during iterative pro-
cessing. Also, atoms other than DCmaintain zero mean during iterative processing.

4.3 Application to Image Coding

This section describes the application to image coding process (encoding / decoding) using
dictionaries designed by the proposed multi-class K-SVD algorithm.

A block diagram of the encoder and decoder is shown in Figure 4.4. All dictionaries
Dc(c = 1, 2, · · · , C) are designed offline, and prestored in both encoder and decoder.
Here, all atoms other than DC in the dictionary are normalized so that the mean value is
zero and the standard deviation is one.

In the encoding process, an image to be coded is divided into small blocks of the same
size as the used in the training process. Then, OMP is performed for each target block ti
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Figure 4.4: Block diagram of encoder and decoder with multi-class dictionaries

under sparsity condition T0; the squared errors ec(c = 1, 2, · · · , C) are calculated as
follows,

ec = ∥ti − Dcxi∥2
F (4.3)

then the class index c and sparse coefficients xi that minimize squared error ec are deter-
mined. Quantized coefficients Q(xi) and class index c are encoded and transmitted.

When sparse coding is applied to image compression, how to assign codes to sparse co-
efficients is an important point. Due to the nature of sparse coding, most of the coefficients
for representing image data are zero; at most T0 coefficients are non-zero. In order to re-
construct an image from sparse coefficients, it is necessary to efficiently encode the index
of each nonzero coefficient, which indicates the basis corresponding to the nonzero coeffi-
cient, based on its statistical properties. Previous studies have shown that the index at which
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nonzero coefficients occur is uniformly random, and the distribution of the quantization
level of nonzero coefficients can be approximated by a Laplacian function[45]. In refer-
ence[45], based on this characteristic, indices of the nonzero coefficients are represented
by a fixed length code and the quantized level of the nonzero coefficients is represented
by a Golomb-Rice code. To express the indices of nonzero coefficients more efficiently, a
method of assigning a variable length code to a zero-run length (i.e. the number of consecu-
tive zero coefficients between nonzero coefficients) has been proposed[1]. The entropy cod-
ing in this paper follows the method of reference[1]. That is, for each block, the number of
quantized nonzero coefficients (NUM), the zero-run length between nonzero coefficients
(ZR), and the level number of the quantized nonzero coefficients (LEVEL) are separately
encoded and transmitted. Since the DC coefficient of a block is highly correlated with that
of its prior block, differential pulse code modulation (DPCM) is adopted when coding DC
coefficients.

Furthermore, in the proposed method, it is necessary to encode the class index in order
to identify the dictionary used for sparse coding. According to our experiments, there was
no clear correlation between the class index of a target block and the class index of its neigh-
boring blocks. Moreover, no indication of the occurrence probability distribution of the
class index concentrated on a specific class. Therefore, class indices are represented using
⌈log2 C⌉ bit fixed length codes.

In the decoding process, the dictionary is adaptively selected block by block based on
the decoded class index, and pixel values in the block are reconstructed as the sum of atoms
weighted by the decoded sparse coefficients. Since the weighted sum is only calculated for
the inverse transformation, the computation cost in the decoder is as low as a normal DCT.

4.4 Experimental Results

4.4.1 Simulation conditions

The effectiveness of the proposed method is evaluated using the ITE test image data set[54,
55] and HEVC test sequence[44]. The experimental conditions are summarized in Ta-
ble 4.1. Thirty-one images with a resolution of 1080p are used as training data for dictionary
design, and six images in Figure 4.5, not included in the training images, are used as encoding
targets.

In this experiment, in order to analyze the behavior of the proposed method in de-
tail, multi-class dictionaries are designed using various parameters. Specifically, dictionaries
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Table 4.1: Experimental conditions

Dictionary
Training

Block size 8 × 8
Initial dictionary Over-complete DCTwith 16 × 16 atoms
Number of classes C 32, 64, 128
Sparsity parameter T0 3, 5, 7, 9
Initial classifier k-means using DSIFT
Maximum iteration limit
for class update, Lmax

20

Encoding

Coefficients quantization Uniform quantization for step QP (for DC,
QP=1)

Coefficients coding (DC) DPCM using the previous block’s DC coefficient
Coefficients coding (AC) Separately encoding of NUM, ZR, and LEVEL
Class index Fixed length coding

are prepared by setting the class index C to 32, 64, 128 and the sparsity parameter T0 to
3, 5, 7, 9. Each basis included in the dictionary is set to 8 × 8 size, following JPEG. Dictio-
nary training based on multi-class K-SVD is started for each class by setting overcomplete
DCT with 16 × 16 = 256 atoms as an initial dictionary. For the initial classification, the
DSIFT feature obtained for each block is used, and the maximum number of iterations of
class update is set to 20.

Next, experimental conditions of encoding are as follows. The coding experiment exam-
ined intraframe coding, and performance is evaluated from the viewpoint of the PSNR of
the decoded image and the amount of information transferred. After the image to be coded
is divided into 8 × 8 blocks, sparse coding using a multi-class dictionary is performed for
each block according to themethod described in Section 3.2, and a class index for specifying
the dictionary to be used and the coefficients corresponding to each basis are obtained. As
described in Section 3.2, DC coefficients of two neighboring blocks are strongly correlated,
so the difference from the decoded DC coefficient of the previous block is quantized and
encoded. Since the DC coefficient greatly influences visual image quality, the quantization
step for the DC coefficient difference is set to just one. The amount of information for DC
coefficients is calculated as the entropy of the quantization level number corresponding to
the quantized prediction error. AC coefficients (coefficients for atoms other than DC) are
linearly quantized with quantization width QP. The quantization level number “LEVEL”
for coefficient x is calculated as:

LEVEL = sign(x) × ⌊(|x| + QP/2) /QP⌋ (4.4)
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(a) BasketballDrive (b) BQTerrace

(c) Cactus (d) ChristmasTree

(e) Kimono1 (f) ParkScene

Figure 4.5: Test images

The amount of information for AC coefficients is calculated as the entropy obtained
from the occurrence probability NUM, ZR and LEVEL. Fixed length code of ⌈log2 C⌉ is
allocated to each class index. The total amount of information required for each block is
calculated as the sum of the amount of information occupied by DC coefficient, AC coef-
ficients, and class index.

4.4.2 Dictionary training performance

Figure 4.6 shows the percentage of training samples whose class indices changed among
the training samples with each class update iteration. Clearly, the change in the number
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(a) T0 = 3 (b) T0 = 5

(c) T0 = 7 (d) T0 = 9

Figure 4.6: The rate of change in the number of training samples belonging to each class

of training samples belonging to each class gradually converges to zero with class update
iteration regardless of the number of classes, C , or the sparsity parameter, T0.

In addition, Figure 4.7 shows the mean square error (MSE) between the original block
and the block reconstructed by the dictionary designed after each iteration number. In this
determination, coefficient quantization was not performed. From Figure 4.7, we find that
MSE strongly decreases in the first few iterations, continues to gradually decrease subse-
quent class update iterations, and converges to a basically constant value in 15 to 20 itera-
tions regardless ofC or T0. Furthermore, the converged value ofMSE apparently decreases
as class numberC increases and as sparsity parameterT0 increases. This is because the atoms
that offer better approximation of the local pixel value distribution are easier to find in the
designed dictionaries as C and/or T0 increase. Based on the above results, the following
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(a) T0 = 3 (b) T0 = 5

(c) T0 = 7 (d) T0 = 9

Figure 4.7: MSE convergence characteristics for the training data

experiments were carried out by setting the maximum iteration number for class update,
Lmax, to 20.

Figure 4.8 shows the number of training samples belonging to each class and the MSE
obtained by sparsely approximating those training samples using T0 = 3 and C = 32.
The blue bar in Figure 4.8 shows MSE of initial classification and the red bar shows MSE
after 20 iterations. In the initial classification based onDSIFT, the training sample distribu-
tion concentrates on some classes, but training samples are distributed among many classes
with each class update iteration. For classes whose initial classification have large MSEs, it
is found that after 20 class updates the MSE decreases dramatically. It is also found that
sparse approximation yields an inverse correlation between the number of samples belong-
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(a) Number of the training samples (b) MSE (per pixel)

Figure 4.8: The number of training samples in each class and their sparse representation
MSE

ing to each class and MSE. This is because among the training image data, as the ratio of
the low frequency vector rises above that of the high frequency vector, and the vector fre-
quency falls, the reconstruction error becomes smaller. This tendency was also found in
experiments using other numbers of classes or other sparsity parameters.

4.4.3 Initial classifier

DSIFT is based on an edge gradient histogram over orientation bins, and the atoms in the
designed dictionary of each class can reflect the edge shape feature of the original block. In
this subsection, we investigate how the convergence value and the convergence speed differ
depending on the initial classification in the proposed algorithm. Two classification meth-
ods, block-variance-basedmethod (VAR) and random-assignment-basedmethod (RAND),
other than DSIFT were tested. Block variance is a measure of the spread of pixel values in a
block, reflecting the sharpness and complexity of the edge. It is calculated by the following
equation:

VAR =
∑

i

∑
j

(f(i, j) − M)2 (4.5)

where M is the average of pixel values in the block. For the initial classification, the blocks
are classified into C classes by k-means method based on VAR. RAND is a method to as-
sign C random variables of 1 to C as class numbers for each block, and it does not require
any specific feature calculations. The experiment by RAND is intended to verify how the
proposed method behaves when starting from random initial classification.

Three types of multi-class dictionaries are designed under three initial classifications,
DSIFT, VAR, and RAND. Figure 4.9 shows the convergence characteristics of MSE when
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Figure 4.9: Convergence characteristics based on three kinds of initial classificationmethods

C = 32 andT0 = 5. FromFigure 4.9, it can be seen that the dictionaries designed by initial
classification with RAND without class update (i.e. the first K-SVD output dictionaries)
have poor image representation performance. Moreover, MSE by the dictionaries designed
by the initial classification byDSIFT becomes smaller than that by VAR.Moreover, regard-
less of which initial classification is used, MSE decreases and converges as the number of
iterations increases. The three MSEs converge to almost the same value, but the conver-
gence speed is the fastest for DSIFT. The similar tendency has shown by the measurement
of convergence characteristics based on three kinds of initial classification methods under
various C and T0. From these results, it can be concluded that the proposed algorithm
can design the high-performance multi-class dictionaries regardless of initial classification
method if the number of class update iterations is sufficiently large.

4.4.4 Coding performance

This section examines the rate distortion characteristics to evaluate the performance of our
approach.

Table 4.2 details the performance (Bjontegaard metric[38]) of the proposed method at
different C and T0 values. In generating the data, the proposed method used dictionaries
designed with 20 iterations, while the reference method to be compared used dictionaries
designed under initial classification. As described later, there is an appropriate T0 in the
range of the target bit rate (compression ratio). In other words, a small T0 is effective for
an application used in a low bit rate environment, and a large T0 is effective for an appli-
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Table 4.2: BD-PSNR[dB] and BD-rate[%] of the proposed method against the conven-
tional method without class update under the same C and T0 as an anchor

T0 C
BasketballDrive BQTerrace Cactus ChristmasTree Kimono1 ParkScene
PSNR RATE PSNR RATE PSNR RATE PSNR RATE PSNR RATE PSNR RATE

3
32 0.85 -26.27 0.75 -26.32 0.78 -22.64 0.83 -40.58 0.67 -8.46 0.75 -17.27
64 1.07 -32.27 0.95 -32.81 1.01 -29.59 0.95 -45.09 1.01 -13.15 0.9 -20.33
128 1.03 -30.56 0.92 -30.75 0.99 -28.49 1.01 -48.26 0.98 -11.96 0.95 -21.23

5
32 0.79 -17.49 0.69 -17.17 0.75 -15.96 0.91 -26.59 0.43 -5.81 0.77 -12.97
64 1.2 -25.88 1.02 -24.57 1.13 -23.61 1.16 -32.75 0.97 -14.06 1.05 -17.43
128 1.12 -23.83 0.99 -23.6 1.09 -22.26 1.23 -34.7 0.92 -12.72 1.05 -17.32

7
32 0.84 -16.78 0.68 -15.03 0.77 -14.47 0.99 -22.2 0.46 -7.17 0.79 -12.12
64 1.23 -23.56 1.04 -21.8 1.21 -21.97 1.35 -28.93 0.81 -12.07 1.18 -17.36
128 1.16 -22.07 0.99 -20.35 1.13 -20.29 1.34 -28.3 0.89 -13.08 1.1 -16.2

9
32 0.85 -16.27 0.7 -14.62 0.78 -14.24 1.02 -19.56 0.56 -8.83 0.82 -12.2
64 1.13 -20.59 0.99 -19.65 1.1 -19.09 1.4 -25.73 0.46 -6.7 1.18 -16.79
128 1.13 -20.16 1.02 -19.69 1.13 -19.04 1.48 -26.32 0.77 -11.47 1.18 -16.45

cation used in a high bit rate environment. Also, there is an appropriate C depending on
the implementation environment of the encoder / decoder. In other words, if the memory
available to the encoder and decoder is large, we can use dictionaries designed with a large
C , but if the memory is small, we can use only dictionaries designed with a small C . Thus,
we can say there aremany cases where dictionaries designedwith fixedT0 andC are used, to
satisfy the requirements of the encoder / decoder implementation and application environ-
ment. Therefore, inTable 4.2,C andT0 of the conventionalmethod used as anchors are the
same as C and T0 of the proposed method, respectively. As shown in Table 4.2, regardless
of the number of classes and sparsity parameters, our approach attained significantly better
BD-PSNR and BD-rate performance than the conventional approach. From Table 4.2, it
can be seen that BD-PSNR improved from 0.4 dB to 1.5 dB for various images. In addition,
the performance improvement in BD-rate was 6% to 48%, and reducing sparsity parameter
T0 increased the bitrate reduction.

In addition, the performance of the proposedmethod is comparedwith that of the con-
ventional method in which the encoding is performed with the number of classes that gives
the best performance. First, the dictionaries in the conventional method are designed by
setting the number of classes to 1, 4, 16, 32, 64, 128, and 256. After that, the rate-distortion
characteristics when encoding with each dictionary are obtained. Next, using the encoding
performance when C = 1 (i.e. single class) as an anchor, the number of classes, Cbest, with
the best BD-rate is determined for each T0. The result is shown in Figure 4.10. Figure 4.10
shows the average BD-rate for the six test sequences, and almost the same results were also
obtained for individual images. From Figure 4.10, we can see thatCbest is 32. Next, summa-
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rizes the BD-PSNR and BD-rate of the proposedmethod in Table 4.3, in which the anchor
is the RD characteristic of the conventional methodwithCbest. Note that sinceCbest = 32,
the row ofC = 32 in Table 4.3 has the same value as Table 4.2. From the above considera-
tions, it was confirmed that the coding performance of the proposed method also exceeded
that of the conventional method using the number of classes which gives the best perfor-
mance.

Figure 4.10: BD bitrate against C = 1 as an anchor (without class update)

Table 4.3: BD-PSNR[dB] andBD-rate[%]of theproposedmethod against the conventional
method without class update under the best C(= 32)

Note that the values in the row for C = 32 are the same as in Table 4.2
T0 C

BasketballDrive BQTerrace Cactus ChristmasTree Kimono1 ParkScene
PSNR RATE PSNR RATE PSNR RATE PSNR RATE PSNR RATE PSNR RATE

3
32 0.85 -26.27 0.75 -26.32 0.78 -22.64 0.83 -40.58 0.67 -8.46 0.75 -17.27
64 0.92 -27.50 0.80 -27.22 0.82 -23.22 0.88 -41.86 0.74 -9.42 0.80 -17.88
128 0.99 -29.41 0.84 -27.68 0.90 -25.24 0.96 -45.50 0.84 -10.31 0.87 -19.29

5
32 0.79 -17.49 0.69 -17.17 0.75 -15.96 0.91 -26.59 0.43 -5.81 0.77 -12.97
64 0.78 -16.88 0.66 -15.56 0.71 -14.08 0.88 -25.06 0.42 -5.44 0.74 -12.08
128 0.81 -17.08 0.68 -15.44 0.75 -14.54 0.94 -26.64 0.48 -6.27 0.76 -12.45

7
32 0.84 -16.78 0.68 -15.03 0.77 -14.47 0.99 -22.20 0.46 -7.17 0.79 -12.12
64 0.73 -13.78 0.64 -12.69 0.68 -11.65 0.95 -20.24 0.35 -4.90 0.71 -10.36
128 0.78 -14.41 0.65 -12.34 0.70 -11.67 0.98 -20.29 0.41 -5.67 0.72 -10.40

9
32 0.85 -16.27 0.70 -14.62 0.78 -14.24 1.02 -19.56 0.56 -8.83 0.82 -12.20
64 0.66 -11.72 0.60 -11.20 0.63 -10.17 0.92 -16.27 0.40 -5.86 0.68 -9.52
128 0.68 -11.78 0.62 -11.05 0.63 -9.81 0.94 -16.4 0.41 -5.80 0.67 -9.21
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Figure 4.11 and Figure 4.12 show the PSNR and bit rate of the test image “Cactus” and
“ParkScene” measured under the condition of C= 32, 64, and 128. Figure 4.11 (a), (c) and
(e) show the rate distortion characteristics of the proposed method, and Figure 4.11 (b), (d)
and (f) show those of the conventional method. We can confirm the effectiveness of the
proposed method relative to the conventional method under sameC and T0 by comparing
Figure 4.11 (a), (c) and (e), with Figure 4.11 (b), (d) and (f), respectively. Also, note that
Figure 4.11 (b) is the result of encoding with the number of classes that gives the maximum
performance in the conventionalmethod. We can see that the performances of the proposed
method shown in Figure 4.11 (a), (c) and (e), are superior to the best performance of the con-
ventional method shown in Figure 4.11 (b). A similar discussion is possible from the results
in Figure 4.12. Figure 4.11 and Figure 4.12 show that as sparsity parameterT0 fell, the PSNR
saturated at a lower bit rate, even if a finer quantization level was used. Therefore, in order
to obtain a high PSNR, encodingmust use a larger number of non-zero coefficients and the
dictionaries designed with large T0 values. On the other hand, in the low bit rate environ-
ment, where the number of non-zero coefficients to be encoded increases, the quantization
step width must be coarse, which leads to a decrease in PSNR. These results suggest that it
is better to use the dictionaries designedwith largeT0 values when high bit rates are possible
and to use the dictionaries designed with small T0 values if only low bit rates are available.
We have confirmed that the same trend is observed for different test images and differentC

values. In order to realize this idea, a method of switching multiple dictionaries designed
with various C and T0 for each target compression ratio or each image/block will be suit-
able. Although the multiple dictionaries designed for various C and T0 must be shared by
the encoder and decoder, the method is considered to be useful as an advanced coding con-
trol method for both the conventional method and the proposed method. These advanced
RD optimization method by adapting C/T0 is an important subject in the future study.
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(a) proposed(C = 32) (b) conventional(C = 32:best)

(c) proposed(C = 64) (d) conventional(C = 64)

(e) proposed(C = 128) (f) conventional(C = 128)

Figure 4.11: RDcurves forCactus. All results include overhead information for class indices
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(a) proposed(C = 32) (b) conventional(C = 32:best)

(c) proposed(C = 64) (d) conventional(C = 64)

(e) proposed(C = 128) (f) conventional(C = 128)

Figure 4.12: RD curves for ParkScene. All results include overhead information for class
indices
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(a) ChristmasTree

(b) Original (c) Without class-update (d) With class-update

Figure 4.13: Perceptual quality comparison for ChristmasTree (0.53 bit/pel, C = 128,
T0 = 9)

Subjective image quality is also improved by the proposed method. Figure 4.13 com-
pares the reconstructed images encoded at the same bit rate using dictionaries designedwith
T0 = 9. It can be seen that the dictionary designed using class update can reconstruct de-
tailed image structure with less visual degradation.

Figure 4.14 shows a histogram of class index selection for each image when an image is
coded using a dictionary designed under the condition of C = 128 and T0 = 3. From
Figure 4.14, it can be seen that the selection ratio of classes differs with the image, and that
image reconstruction does trigger switching to the appropriate dictionary according to the
distribution of the local features of the image to be encoded. Figure 4.15 shows the rela-
tionship between the feature of the bases included in some dictionaries and the feature of
the blocks that selected each of those dictionaries. Figure 4.15 (a) is a part of image “Park
Scene”. Figure 4.15 (b), Figure 4.15 (d) and Figure 4.15 (f) show the blocks using the dic-
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tionaries shown in Figure 4.15 (c), Figure 4.15 (e) and Figure 4.15 (g), respectively. We can
see that the blocks in Figure 4.15 (b), Figure 4.15 (d) and Figure 4.15 (f) contain vertical,
diagonal and horizontal edge, respectively, and the selected dictionary contains many bases
that reflect the block feature. These confirm the effectiveness of the multi-class dictionary
approach. Also, since there is no class index that is rarely used, it can be said that the number
of classes is not excessive.

Next, we consider the local correlationof class indices. If the class indices of neighboring
blocks are highly correlated, applying the following rules in code assignmentmay reduce the
total code length. Let CP be the class index of the target block, CA be the class index of its
left neighboring block, andCB be the class index of its upper neighboring block. The code
assignment rule is:

• “00” if CP = CA

• “01” if CP = CB

• “1”+“fixed length code with ⌈log2 C⌉ bit” otherwise.

The number of bits yielded by the above rule is smaller than that yielded by fixed length
coding only when the probabilities of CP = CA or CP = CB are larger than 0.25 (C =
32), 0.2 (C = 64), 0.167 (C = 128), respectively. I measured the probability that the class
index of a block to be coded is the same as the class index of its left or upper neighboring
blocks for the six test images in Figure 4.5 underT0 = 3. They were 0.118, 0.076, 0.054 for
the case ofC = 32,C = 64 andC = 128, respectively. This result suggests that the class
index has only slight local correlation, and that using a variable length code to the class has
little benefit. Therefore, as described in Section 4.3, it is appropriate to assign a fixed length
code to each class index.
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(a) BasketballDrive (b) BQTerrace

(c) Cactus (d) ChristmasTree

(e) Kimono1 (f) ParkScene

Figure 4.14: Class selection probability (T0 = 3, C = 128)
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(a) A part of “BQTerrace”

(b) Block corresponding to dictionary (c) (c) Dictionary ♯25

(d) Block corresponding to dictionary (e) (e) Dictionary ♯29

(f) Block corresponding to dictionary (g) (g) Dictionary ♯88

Figure 4.15: Example of relationship between the feature of blocks and the selected dictio-
nary 71
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4.5 Summary

In this chapter, we first review the research related to the multi-class sparse dictionary ap-
plied to image coding, and introduced a framework for multi-class dictionary design. Since
such dictionaries did not consider the relevance of classification effects and dictionary de-
sign, therefore in section 4.2, I proposed a multi-class K-SVDmethod that considers inter-
dependency of classification performance and dictionary design. In the proposed method,
after multiple dictionaries are designed by K-SVD, sparse coding for each training vector is
per-formed using all of the dictionaries. As a result, the training vector is reclassified into
the class that best approximates it. By iteratively performing the dictionary design stage and
the class update stage, it is possible to design dictionaries that enable more efficient sparse
representation. The way to hire this method for image coding is introduced in section 4.3,
and the coding experiments are detailed in section 4.4. Experiments on still images revealed
that the proposed algorithm gives a significant coding gain compared to the conventional
method based on fixed classification with predetermined features.
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When the sparse coding is applied to image compression, the problem is how to encode
the nonzero coefficients distributed in sparse. The statistical properties of sparse nonzero
coefficients have been analyzed in some previous studies. In [45], it has been experimen-
tally reported that the atom indices to indicate the occurrence position of nonzero coeffi-
cient can be approximated by uniform distribution, and nonzero coefficient levels can be
approximated by Laplacian distribution. However, it is not clear how the atom indices and
the nonzero coefficient levels in a block are related to the number of nonzero coefficients
in the block. Also, a detailed analysis of the relationship between a nonzero coefficient level
and its corresponding atom’s feature has not been performed. For more efficient entropy
coding design, it is necessary to analyze statistical properties of nonzero coefficients in more
detail.

5.1 Methods of Entropy Coding

In image coding, it is necessary to make symbols to be coded into binary codes. This proce-
dure is called entropy coding, and various kinds of variable length coding (VLC) based on
the occurrence probability of symbols are utilized. By assigning fewer bits to encode more
frequently occurring symbols, the total amount of bits used to encode the all symbols can
be reduced.
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(a) DCT atom (b) Scan order in JPEG (c) Scan order in H.265/HEVC

Figure 5.1: DCT atom and scan order

5.1.1 Code assignment techniques for transform coefficients

Here, we review some code assignment techniques for transform coefficients. Discrete Co-
sine Transform (DCT) is one of the most popular techniques used today in video compres-
sion schemes. Figure 5.1(a) shows the 8 × 8 array of atom images for the two dimensional
DCT. DCT converts a set of pixels in a block into the weighted sum of DCT atoms. The
weighting factors are called DCT coefficients. Statistically, the magnitude of the DCT co-
efficients for low frequency atoms are greater than that for high frequency atoms. Also, by
quantizing the coefficients, many DCT coefficients for high frequency atoms will be zero.

This property is used to perform efficient entropy coding by appropriately setting the
scan order of DCT coefficients. The order of zigzag scan in JPEG andMPEG-2 is shown in
Figure 5.1(b). The first coefficient of each block obtained as a result of zigzag scan is called
the DC coefficient while the other coefficients are called AC coefficients. For AC coeffi-
cients, a variable length code is assigned for the pair of a nonzero coefficient and its preced-
ing zero-run length[56, 57]. An End-of-Block (EOB) at the end of each block indicates the
rest of the coefficients of the block are all zero, and it enables to represent long consecutive
zeros effectively. In H.265/HEVC, quantized DCT coefficients are coded as follows. They
are scanned diagonally to form a 1D array as shown in Figure 5.1(c). The context adaptive
binary arithmetic coder (CABAC) encodes the last position of nonzero coefficients, a signif-
icance map indicating the positions of nonzero coefficients, and the quantized coefficient
level values[58, 59].

74



CHAPTER 5. ENTROPY CODINGMETHOD FOR SPARSE COEFFICIENTS

(a) (b) (c) (d)

Figure 5.2: Examples of multiclass dictionaries designed by K-SVD
(a) overcomplete DCT, (b, c, d) Dictionaries designed by K-SVD

5.1.2 Related works

In the case of complete DCT, the frequency characteristics of each atom are known, and
they are regularly arranged. The relative relationship between the characteristics of each
atom and the magnitude of the transform coefficient corresponding to each atom is also
clarified. Therefore, by setting the scan order as shown in Figure 5.1 based on these char-
acteristics in advance, the number of occurred bits can be reduced effectively. Also, for
the atoms based on complete DCT, the international standard methods H.264/AVC and
H.265/HEVC have adopted a method of switching the code table for each block using the
number of non-zero coefficients as a context[58, 60]. On the other hand, each atom of
the overcomplete dictionary designed by K-SVD does not have regular frequency charac-
teristics like DCT. Thus, it has not been clarified what kind of atom has a large non-zero
coefficient. Also, it has not been clarified how the coefficient quantization level distribu-
tion changes with the number of non-zero coefficients in the block. Therefore, in order
to perform entropy coding for sparse coefficients as efficient as the conventional method,
we need to clarify the statistical properties of the sparse coefficients and to clarify how to
reorder the sparse coefficients based on the findings.

Figure 5.2 shows some examples of dictionaries designed by multi-class K-SVD. It is
important to note that the atoms in a dictionary designed by K-SVD are not necessarily
arranged in frequency order like DCT, and the atoms with different properties appear ran-
domly.

Several entropy coding for sparse representations have also been studied. In image cod-
ing using sparse representation, OMP is performed using a dictionary for each block to be
coded, and atmostT0 nonzero coefficients are calculated. All other coefficients are zero. For
the entropy coding of the sparse representation, the indices of atoms correspondingnonzero
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coefficients after quantization and the nonzero coefficients levels are encoded. In the con-
ventional studies, it has been clarified that the histogram of the atom’s indices is approxi-
mated to a uniform distribution, the histogram curve for the quantized coefficient levels is
approximated to the Laplacian distribution[45, 61]. In [61], it is shown that the nonzero co-
efficient in the case of sparse representationbyovercompleteDCTbecomesLaplaciandistri-
bution. Based on these features, a fixed length code was assigned for the atom index coding,
andHuffman code or a truncated unary code combinedwith an Exponential-Golomb code
was employed to encode the quantized coefficient level[45, 61]. On the other hand, instead
of assigning a code directly to an index, amethod of assigning aHuffman code to a zero-run
length (i.e. the number of consecutive zero coefficients between nonzero coefficients) has
also been studied[1].

However, in the conventional researches, the relationship between the atom indices cor-
responding the nonzero coefficients in a block and the number of nonzero coefficients of
the block has not been clarified. Also, the relationship between the probability distribution
of the nonzero coefficient levels and the number of nonzero coefficients of the block has
not been clarified. In addition, the detailed analysis of the relationship between the magni-
tude of nonzero coefficient level and the feature of the corresponding atoms has not been
conducted. Therefore, there is room for improving the conventional code assignment pro-
cedure by using the number of nonzero coefficients and feature of the atoms as a context. In
the next section, the statistical properties of nonzero coefficients are analyzed in detail from
theoretical and experimental viewpoints for sparse representation of images, and I propose
an efficient entropy coding scheme for sparse coefficients.

5.2 Statistical Properties of Sparse Coefficients

In this section, the statistical properties of the sparse coefficients are analyzed in detail for
the entropy coding scheme design. The analysis in Section 5.2 is carried out theoretically
and experimentally. A set of small blocks extracted from six types of images, “BQTerrace”,
“BasketballDrive”, and “Cactus”, “ChristmasTree”, “Kimono1” and “ParkScene” from the
MPEG test sequence are used for statistical analysis, where these images are also used as test
data for the experiments in Section 4.4.1.

The sparse coefficients to be encoded can be illustrated as in Figure 5.3. First, the image
is divided into small blocks of

√
L

2 ×
√

L
2 . Next, for each small block, OMP is performed

on the dictionary designed by K-SVD to obtain T0 sparse coefficients. The dimension of a
dictionary isL. After quantization, I obtain sparse coefficients to be encoded for each small
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Figure 5.3: Sparse coefficients to be coded

block. Let k be the number of nonzero coefficients after quantization. Here, all DC coeffi-
cients are quantized by step one and they are always encoded. Also, nonzeroAC coefficients
are quantized by the quantization step QP. The number of nonzero AC coefficients after
quantization is at most T0 − 1. Set the number of blocks in which the number of nonzero
coefficients to be coded becomes k among all blocks of the image as N(k). N(1) means
the number of the blocks represented by DC coefficients only. The total number of blocks
in the whole image,N , isN = ∑T0

k=1 N(k), and the number of DC coefficients in the im-
age, NDC, is equal to N . In addition, the number of nonzero AC coefficients in the whole
image, NnonzeroAC, is expressed by:

NnonzeroAC =
T0∑

k=2
(k − 1)N(k) (5.1)

5.2.1 Syntax of sparse coefficients coding

Figure 5.4 shows the sparse coefficient coding syntax analyzed in this study. The infor-
mation required for each block to be encoded are, class No.: a class number indicating
which of dictionaries is used, k: the number of nonzero coefficients in the block, coefDC :
a weighting factor for DC atom, and coefAC : weighting factors for AC atoms. Also, the
number of nonzero AC coefficients is k − 1, and it is necessary to encode atom indices and
quantized coefficient levels for each nonzero AC coefficient. In this study, in order to per-
form code allocation adaptively by the number of nonzero coefficients for each block, the
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Figure 5.4: Bit stream structure for sparse coefficients

number of nonzero coefficients in a block, k, is encoded prior to the atom indices of the
nonzero coefficients and the quantized coefficients level. For the syntax of AC coefficients,
the atom indices for nonzero coefficients and the nonzero quantized coefficients level are en-
coded. Regarding the atom indices, wewill consider two kinds ofmethods: direct encoding
of indices and a method of using zero run length between indices of nonzero coefficients.

5.2.2 Nonzero coefficients distribution and entropy

In the conventional research[45, 61], the atom indices for nonzero coefficients after quanti-
zation and the nonzero quantized coefficient levels are coded independently, and any adap-
tation of code assignment depending on the number of sparse coefficients in the block and
the feature of the atoms has not been studied. In this subsection, I first unify the symbols
of all blocks based on the conventional method and analyze the statistical properties of the
nonzero coefficients and the amount of generated bits. In this study, the amount of gener-
ated information is analyzed based on the entropy calculated from the occurrence probabil-
ity of the symbols to be coded. The total amount of generated bits for the whole image is
expressed as:

Bitall = Bitclass + Bitk + BitDC + BitAC (5.2)

Here, Bitclass, Bitk, BitDC and BitAC are the amount of generated bits for class
number, the number of nonzero coefficients, DC coefficient, AC coefficient, respectively.
The amount of each code bits can be calculated as follows.

First, a class number can be expressed as a fixed-length code of log2 C bits per block,
whereC is thenumberof classes. The amountof generatedbits in thewhole image,Bitclass,
can be calculated as Bitclass = N × log2 C .

Next, to calculate the number of bits for the number of nonzero coefficients, it is neces-

78



CHAPTER 5. ENTROPY CODINGMETHOD FOR SPARSE COEFFICIENTS

(a) (b)

Figure 5.5: Probability histogramsof (a) position index and (b)magnitudeof nonzeroquan-
tized AC coefficients

sary to consider the distribution of the occurrence probability p(k). p(k) changes with the
quantization step QP for the coefficients. When the QP becomes smaller, the occurrence
probability of large k increases, and as the QP becomes coarser, the occurrence probabil-
ity of small k increases. The amount of bits for the number of nonzero coefficients in the
whole image is calculated as Bitk = Ek × N , where Ek is the entropy of p(k) as shown
following equation.

Ek = −
T0∑

k=1
p(k) log2 p(k) (5.3)

The amount of bits generated for the DC coefficient is calculated as follows. Since the
DC coefficients reflect the average value of the block, there is a high correlation between the
DC coefficients of adjacent blocks. Therefore, DPCM is performed based on the difference
with the previous block. Since the probability distribution of the difference signal is approx-
imated as a Laplacian distribution centered at zero, the total amount of bits is calculated as
BitDC = EDC × N , where EDC is an entropy based on the occurrence probability of
differential DC values.

The amount of bits generated for nonzero AC coefficient is calculated from the dis-
tribution of their atom indices and coefficient levels. Figure 5.5(a) shows a histogram of
atom indices for nonzero AC coefficients measured when sparse coding is performed on the
test images by setting T0 = 7 and QP= 16. From the results, the occurrence probability
of atom indices for nonzero coefficient is almost uniform. Similar measurements were per-
formed for various combinations ofT0 andQP, and a chi-square testwas performed for each
case. As a result, we could confirm the uniformity of the probability distribution of atom
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Figure 5.6: Number of bits generated

indices as in the conventional study[45]. When uniformity of the occurrence probability
distribution of atom indices can be assumed, log2 L bits are needed per one atom index the-
oretically. Therefore, the total amount of bits for atom indices in the whole image, BitI ,
is BitI = log2 L × NnonzeroAC. Also, Figure 5.5(b) shows the distribution of nonzero
quantized AC coefficient levels, which can be approximated by the Laplacian distribution
centered on zero. Note that there is no zero coefficient. Coarse quantization concentrates
the occurrence probability distribution to smaller levels and increases the number of zero
coefficients. The amount of bits for nonzero coefficient levels in the whole image, BitL, is
EL × NnonzeroAC, where EL is the entropy of the nonzero AC coefficient levels. The total
amount of bits for nonzero AC coefficient in the whole image, BitAC , is calculated as the
sum of BitI and BitL.

Figure 5.6 shows the amountof bits generated in thewhole imagemeasuredby changing
QP. The coefficient level becomes smaller when the coarse quantization step is used, so the
amount of bits for AC coefficient levels decreases. Similarly, when coarse quantization step
is used, the number of nonzero quantized AC coefficients decreases, so the amount of bits
for atom indices decreases. Since the quantization step for DC coefficients is always one,
BitDC is constant regardless of the quantization parameter QP for AC coefficients. Bitk

shows a slight increase or decrease because the distribution of the number of nonzero AC
coefficients changes depending on the magnitude of QP. Bitclass is constant because it is
determined only by the number of classes. From Figure 5.6, it is clear that reducing the
amount of bits for expressing the AC coefficient is very significant.

In order to reduce the amount of generated bits for the nonzero AC coefficients, it
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(a) (b)

Figure 5.7: Probability histogramsof (a) position index and (b)magnitudeof nonzeroquan-
tized AC coefficients, after categorizing based on k

is possible to divide the nonzero AC coefficients into multiple categories according to the
number of nonzero coefficients in the block and perform code allocation suitable for each
category. Theoretically, if the symbols can be separated intomultiple categories so that their
occurrence probability distributions are as different each other as possible, the total code
amount can be reduced.

Figure 5.7 shows the distribution of atom indices for nonzero AC coefficients and the
distribution of AC coefficient levels, after categorizing based on the number of nonzero
coefficients in the block. As shown in Figure 5.7, it is clear that the information symbols
separation by k has little effect because the probability distribution of the atom’s indices
corresponding nonzero coefficients is almost same regardless of the value of k. On the other
hand, since the occurrence probability of nonzero quantization level numbers show differ-
ent distributions depending on k, it is considered to be significant to perform the symbol
separation by k.

5.3 Proposal of Sparse Coefficients Entropy Coding

5.3.1 Sparsity adaptive sparse coefficient coding

Another way to represent atom indices of nonzero coefficients is to use the number of zero
coefficients (i.e. zero run length) preceding nonzero coefficients[1]. The statistics of zero
run length is analyzed when L coefficients are divided by k nonzero coefficients as shown
in Figure 5.8. This problem can be solved theoretically as a consequence of the broken stick
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Figure 5.8: The probability density function of r, the length of any divided segments

Figure 5.9: The theoretical probability distribution of zero run length

problem[62], which is an analysis problem concerning the probability distribution of the
length for a piece of sub segments when the line segment of length 1 is divided by n − 1
random points. The probability density function of the length r(0 ≤ r ≤ 1) of any
divided segments is:

g(r) = (n − 1)(1 − r)n−2 (5.4)

The probabilityP (r0) that the length of each segment becomes [r0, r0 +ϵ) is obtained
by integration of equation(5.4) as:

P (r0) =
∫ r0+ϵ

r0
g(r)dr

=
[
−(1 − r)n−1

]r0+ϵ

r0

=(1 − r0)n−1 −
(
1 − (r0 + ϵ)

)n−1

(5.5)
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Applying the above analysis to the distribution of sparse coefficients, the length of the
original line segment corresponds to the dimensionL of a dictionary, and the length of each
divided segment corresponds to the zero-run length. Figure 5.9 shows the theoretical prob-
ability distribution of zero run length when the length of the original line segment is set
to L = 256. The occurrence probability is found to be a distribution based on an expo-
nential function. In Reference [1], code design is performed by integrating the occurrence
probabilities, that is, without classification by the number of nonzero coefficients. How-
ever, from Figure 5.9, since the parameters of exponential function clearly differ depending
on the number of nonzero coefficients in the block, it can be expected that more efficient
code assignment for zero run length becomes possible by categorizing nonzero coefficients
by k. The entropy of the zero-run length is:

Erun(k) =
L−1∑
i=0

P (i/L) log2 P (i/L) (5.6)

whereP (i/L) = (1 − i/L)k −
(
1 − (i/L + 1/L)

)k
. The amount of bits to represent

the atom indices in the whole image is calculated as:

BitI =
T0∑

k=2
Erun(k − 1)N(k)(k − 1) (5.7)

5.3.2 Adaptive coding by atom features

It is known that the features of the atoms appearing in the dictionary designedbyK-SVDare
strongly influenced by the features of the training samples, and they are different from gen-
eral atoms such asDCT. Figure 5.10 shows the Fourier power spectrumof each atom for the
four dictionaries shown in Figure 5.2. The center of each spectral image corresponds to the
DC component, and the longer the distance from the center, the higher the frequency. For
comparison, the power spectrum for complete DCTwas added as shown in Figure 5.10(e).
FromFigure 5.10, in the dictionary consisting of atomswith regular frequency arrangement
such as DCT and overcomplete DCT (Figure 5.10 (a), (e)), each atom complements each
other so as to cover all frequency bands. On the other hand, the overcomplete dictionary
designed byK-SVD (Figure 5.10 (b), (c), (d)) does not necessarily consist of atoms that cover
all frequency bands. It can be seen that it is composed of atoms that can express a specific
frequency band in more detail. When expressing images using a training-based dictionary,
there have been no studies investigating the dependency between the characteristics of the
weighting factors and the features of the atoms. If there is a correlation between some fea-
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(a) (b)

(c) (d) (e)

Figure 5.10: Power spectrum for atoms
(a) overcomplete DCT (Figure 5.2(a)), (b) K-SVD(Figure 5.2(b)), (c)
K-SVD(Figure 5.2(c)), (d) K-SVD(Figure 5.2(d)), (e) complete DCT

tures of atom and weighting factors, it is possible to reduce the number of generated bits by
adaptively changing the code assignment to the weighting factors with the atom’s features
as the context.

Therefore, we first investigated the relationship between some features of atoms and the
magnitude of theweighting factors. Let b(i, j) be anM ×M atom in a dictionary designed
by K-SVD. The following four features are investigated as the features of each atom,

• Fourier transform:

F1(th) =
∑

|u|+|v|≤th |B(u, v)|2∑
u,v |B(u, v)|2
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whereB(u, v) is the Fourier power spectrum of b(i, j),−M/2 ≤ u ≤ M/2, −M/2 ≤
v ≤ M/2.

• Discrete cosine transform:

F2(th) =
∑

(u+v)≤th |C(u, v)|2∑
u,v |C(u, v)|2

where C(u, v) is the DCT coefficients of b(i, j), 0 ≤ u ≤ M − 1, 0 ≤ v ≤ M − 1.

• Total variation:

F3 =
∑

i

∑
j

(
|b(i + 1, j) − b(i, j)| + |b(i, j + 1) − b(i, j)|

)

• Number of strong edge:

F4(th) =
∑

i

∑
j

(
mH(i, j) + mV (i, j)

)
where

mH(i, j) =

1, if |b(i + 1, j) − b(i, j)| > th

0, else

mV (i, j) =

1, if |b(i, j + 1) − b(i, j)| > th

0, else

Figure 5.11 shows the correlation between each feature of atoms and the magnitude of
the nonzero AC coefficient. Figure 5.11 also shows the average and the standard deviation
of the absolute value of nonzero AC coefficients generated for the atoms in each section
after dividing the feature quantity into 16 sections. In Figure 5.11, the results show the case
where the parameter th for each feature value is set so that the correlation coefficient be-
comes the highest. There is a significant correlation between these four feature values and
the magnitude of nonzero AC coefficients. Therefore, if we adapt the code assignment to
the nonzero AC coefficient levels according to the feature of their corresponding atoms,
the amount of generated bits can be reduced. Also, from the observation in Figure 5.11, we
can consider that more efficient code assignment for the length of zero runs is performed by
reordering the atoms so that the coefficients with large absolute values are scanned first. Fig-
ure 5.12 shows the examples of the atoms reordered by their features. Because the reordering
of atoms concentrates nonzero AC coefficients at the start of the scan, so the probability of
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(a) (b)

(c) (d)

Figure 5.11: Correlation between atom feature and magnitude of nonzero coefficients

having a short zero run length becomes high. This results in more efficient code assignment
to zero run length.

Figure 5.13 shows the occurrence probability of nonzero AC coefficient levels for the
feature value of atom. Here, the feature value of atom utilized is F3 which showed the
strongest correlation from the measurement results shown in Figure 5.11. After defining
p = int(16 × F3/max (F3)), I measure the probability distribution for each p. This
measurement is performed under the condition of T0 = 5 andQP= 32. It is clear that the
probability distribution is different depending on the feature value of atoms. In addition,
Figure 5.14 shows the comparison between occurrence probability of the zero-run length
under original order and that after reordering the atoms using the feature valueF3. We can
find that the zero-run length has a distribution that concentrates on smaller values for all k
compared to before reordering the atoms. Therefore, it was verified that the adaptive code
assignment by considering the atom feature is very significant for reducing both the amount
of nonzero AC coefficient level and zero run length.
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(a) Before reordering (b) Scan order (c) Reordered by F1(2) (d) Reordered by F1(4)

(e) Reordered by F2(2) (f) Reordered by F2(4) (g) Reordered by F3 (h) Reordered by F4(10)

Figure 5.12: Examples of the atoms reordered by their features

Figure 5.15(a) shows the measured feature value F3 for each atom in the dictionary de-
signed using K-SVD. The blue line in Figure 5.15 is the result by the conventional zigzag
scan order, and the red line is the result by scanning in ascending order of F3. When ar-
ranged in the conventional zigzag scan order, the feature value F3 fluctuates drastically. As
a result, the probability that a coefficient with a large magnitude and a coefficient with a
small magnitude will randomly occur becomes higher, and code assignment to zero runs
becomes inefficient. If the coefficients are scanned in ascending order of F3, the probabil-
ity that coefficients with large magnitude will be concentrated at the beginning of the scan
becomes higher, and efficient code assignment can be realized. On the other hand, the mea-
surement results for complete DCT under the same conditions in Figure 5.15(a) are shown
in Figure 5.15(b). We can see that even if the proposedmethod is applied to complete DCT,
the scan order is almost unchanged from the zigzag scan used in the conventional method,
and the effect of increasing the coding efficiency is small. The reason why the scan order
hardly changes even when the proposedmethod is applied is that zigzag scan itself is already
setting effectively for completeDCTwhose atom features are already known. Note that the
results in Figure 5.15 was confirmed to be the same when not only the feature value F3 but
also other feature values F1, F2, and F4 are used.
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Figure 5.13: Probability distribution of level after reordering

Table 5.1: Simulation conditions

Training data 1.2M 8 × 8 blocks from [54]
Feature for classifier DSURF
Number of classes C 16, 32, 64, 128
Initial dictionary 16 × 16 overcomplete DCT
T0 3, 5, 7

5.4 Experiments

5.4.1 Experimental conditions

In this section, based on the analysis in section 5.3, simulation experiments are performed
under various conditions to verify the coding efficiency. The experimental conditions are
shown inTable 5.1. In order to design the dictionary, a total of 1.2million 8×8 blocks were
extracted from the images of the ITE/ARIB HDTV test materials database[54] as training
data, and they were classified by DSURF. The multi-class dictionaries were designed under
the number of classes of 16, 32, 64 and 128. In each class, a dictionary is designed by K-
SVDwith an overcomplete DCT of dimension 16 × 16 (sixteen 8 × 8DCT bases in both
horizontal and vertical direction) as the initial dictionary. The sparse constraint parameter
T0 was set to 3, 5, and 7.
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(a) k = 2 (b) k = 3

(c) k = 4 (d) k = 5

Figure 5.14: Probability distribution of zero run before and after reordering

If the number of samples used for training is too small, the image representation per-
formance by the designed dictionary will be degraded, and as a result meaningful experi-
ments for this study will not be possible. If the number of samples used for training is large
enough and various features of general images are well-balanced in them, the dictionary cre-
ated by learning will converge to a versatile optimal solution. In this study, the ITE test
image database was used for training. This is because it is composed of images with various
features targeted for codec evaluation, etc., and it is considered that the features of images
that are generally used can be captured sufficiently by using all these images for training. In
the conventional studies, training is performed using samples of tens of thousands of blocks
(for example, about 68000 blocks in Reference[45] and one hundred thousand blocks in
Reference [1]). On the other hand, the number of 1.2 million blocks used in this study is
sufficiently large compared to the number of blocks used in the conventional studies. So, it
is considered that an appropriate dictionary is designed for entropy coding research, which
is the focus of this dissertation.
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(a) dictionary designed by K-SVD (b) complete DCT

Figure 5.15: Probability distribution of zero run before and after reordering

When encoding, first, the image to be encoded is divided into 8 × 8 small blocks, and
their class number are determined by the k-means method according to the DSURF fea-
ture of the small block. Next, using OMP and the selected class dictionary, I obtain T0

sparse coefficients that approximate the small block to be encoded. In OMP, DC atom is
always used. Therefore, the number of AC coefficients is T0 − 1. The obtained DC co-
efficients are quantized with quantization step 1 (i.e., rounded to the nearest integer). On
the other hand, AC coefficients are quantized with quantization step QP. In this experi-
ment, I set QP= 16, 24, 32, 40. Under these parameters, the effectiveness of introducing
zero runs, the effectiveness of adaptation with the number of nonzero coefficients, and the
effectiveness of adaptation by feature of atoms feature are examined, in comparison with
conventional entropy coding. Note that, in this research, the image quality does not change
in case the same QP is used, so the effectiveness can be verified only based on the amount
of generated bits. As shown in Section 5.3, the amount of generated information is calcu-
lated by the entropy based on the occurrence probability of the symbols to be coded. In the
original documents (References[45] and [1]) of the conventional methods to be compared,
Huffman codes and Golomb-Rice codes are assigned to the generated symbols. However,
for the conventionalmethods in this experiment, instead of actually assigning a code bit, the
amount of information is calculated based on the entropy of the generated symbol in order
to make a fair comparison.
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Figure 5.16: Number of generated bits
by (1) conventional[45], (2) conventional(zero run)[1] and (3) k-adaptive, for (a)

BQTerrace, (b) BasketballDrive, (c) Cactus, (d) ChristmasTree, (e) Kimono1 and (f)
ParkScene. T0 = 5, QP = 24

5.4.2 Experimental results

First, under the conditions fixed at T0 = 5 andQP= 24, I measured the effectiveness of k-
adaptation, i.e. the adaptive encoding by the number of nonzero coefficients. Figure 5.16(1)
shows the result of the conventional method based onReference[45], in which the index of
the atom corresponding to the nonzero coefficient is directly encoded.

Figure 5.16(2) shows the result of the conventional method based on Reference [1]),
in which the zero-run length between nonzero coefficients is encoded. The k-adaptation is
not performed in both Figure 5.16(1) and Figure 5.16(2). On the other hand, Figure 5.16(3)
shows the result of applying k-adaptation to Figure 5.16(2). We found fromFigure 5.16 that
the introduction of zero-run length can reduce the amount of information generated for the
indices, so the total amount of information decreases accordingly. However, it should be
noted that the amount of information for the quantized level number of the nonzero co-
efficients has not been reduced. On the other hand, introduction of k-adaptation can not
only reduce the amount of information for zero run length but also reduce the amount of
information for level number, as a result it is possible to reduce the total amount of infor-
mation up to 11.0% compared to Reference[45] and up to 4.7% compared to Reference [1].
These characteristics were also found to be similar when using different T0 and QP.

Next, we verified the effectiveness of adaptation based on the feature of the atoms. The
experiment was performed under the condition that the zero-run length and the nonzero
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Table 5.2: Number of generated bits (kbit)

(a) conventional[1], (b) k-adaptation, (c) bit saving ratio(%): (b)−(a)
(a) ,

(d) k-adaptation+atom reordering with the feature F1, F2, F3, F4,
(e) bit saving ratio(%): F3−(a)

(a)

Images (a) (b) (c) (d) (e)
F1 F2 F3 F4

BQTerrace
Index 117.2 115.8 -1.2 115.7 115.3 115.1 113.8 -1.8
Level 50.5 47.6 -5.7 46.3 44.0 44.2 45.5 -12.5
Total 167.7 163.4 -2.5 162.0 159.3 159.2 159.3 -5.0

BasketballDrive
Index 79.8 76.9 -3.6 77.6 73.4 73.6 73.6 -7.7
Level 17.7 16.0 -9.7 15.1 12.9 12.9 13.4 -27.1
Total 97.5 92.9 -4.7 92.7 86.4 86.5 87.0 -11.3

Cactus
Index 108.4 106.5 -1.8 104.9 104.0 103.4 103.7 -4.6
Level 29.9 28.7 -3.8 27.3 24.5 24.7 25.8 -17.5
Total 138.3 135.2 -2.2 132.2 128.5 128.1 129.5 -7.4

ChristmasTree
Index 136.4 134.8 -1.1 134.2 134.5 134.0 133.7 -1.7
Level 55.5 52.0 -6.3 51.0 49.6 49.4 50.4 -11.0
Total 191.9 186.8 -2.6 185.2 184.1 183.5 184.2 -4.4

Kimono1
Index 63.6 61.6 -3.2 60.1 58.6 58.4 59.3 -8.2
Level 13.1 12.3 -6.2 11.5 9.5 9.6 10.5 -26.9
Total 76.7 73.9 -3.7 71.5 68.1 68.0 69.8 -11.4

ParkScene
Index 104.6 102.3 -2.2 100.0 99.5 98.8 99.7 -5.5
Level 24.0 23.0 -4.2 21.7 18.9 18.9 20.3 -21.2
Total 128.6 125.3 -2.6 121.7 118.4 117.7 120.0 -8.4

AC coefficient level were classified according to the number of nonzero coefficients in each
block, and they were encoded independently. A dictionary is created in which the atoms
were reordered using the four features defined in section 5.3.2, and compared the amount
of bits using the new dictionary with the amount of bits using the original dictionary. The
measured results are shown in Table 5.2.

The column (a) in Table 5.2 shows the amount of information generated by the con-
ventionalmethod shown inReference [1], the column (b) in Table 5.2 shows that generated
when k-adaptation is applied to the conventional method, and the column (d) of Table 5.2
shows the amount of generated information when atom reordering is performed in addi-
tion to k-adaptation method. The column (c) and (e) in Table 5.2 show the reduction rate
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of the amount of generated information for the column (b) and (d) based on the column
(a), respectively. Table 5.2 shows that reordering of atoms by any of the four features makes
it possible to reduce the amount of generated information compared to before reordering.
In particular, it can be confirmed that the amount of generated bits can beminimized when
using the atom feature valueF3. The reason is that, the feature valueF3 is highly correlated
with the nonzero AC coefficient level as described in section 5.3. As a result, the amount
of bits nonzero AC coefficient levels can be reduced by adopting different code assignment
rules for them according to the feature of atoms. Also, the reordering of atoms can concen-
trate the distribution of zero-run length closer to zero, and leads to a reduction the amount
of bits for zero-run length.

Finally, I measured the overall performance under setting the feature value used to re-
order the atoms to F3 which is the most effective to reduce the amount of bits. The class
number C was set to four types of 16, 32, 64 and 128. For each C , the sparse parameter
T0 was set to 3, 5 and 7, and the quantization parameter QP was set to 16, 24, 32 and 40.
The total amount of bits generated was measured as the sum of the amount of bits for the
class number, for the number of nonzero coefficients, for coefficients of DC atom and for
coefficients of AC atom. The measured average performance gain, BD-rate, between the
proposed method and the conventional method is shown in Table 5.3. Table 5.3 shows
that the proposed method can reduce the total amount of bits up to 6.2% compared to the
conventional method.

K-SVD is a block-based processing similar to DCT-based coding, so the block noise oc-
curswhen the compression ratiobecomeshigh. Using theproposed entropy codingmethod,
a smaller quantization step can be used in comparison with the conventional entropy cod-
ing methods under the same compression ratio. As a result, block noise can be reduced as
shown in Figure 5.17.

In the experiments by combining the number of classes (C = 16, 32, 64, 128), quan-
tization step (QP= 16, 24, 32, 40) and sparsity (T0 = 3, 5, 7) as experimental parameters,
we clarified that the proposed entropy coding is effective at any bit rate from high compres-
sion to low compression. When K-SVD is applied to actual compression coding, multiple
parameters of the number of dictionary classes, the quantization step and the sparsity pa-
rameter must be controlled in order to keep the amount of generated bits within a predeter-
mined compression ratio. It is considered that the proposed entropy coding method can be
utilized for the rate-distortion optimization control for image compression with K-SVD, it
will be addressed as a future work.
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Table 5.3: BD-rate[%] between proposed method and Reference [1]

Images T0
Number of class

16 32 64 128

BQTerrace
3 -1.43 -1.35 -1.37 -1.31
5 -5.5 -6.27 -5.56 -6.1
7 -4.27 -4.21 -4.16 -4.11

BasketballDrive
3 -2.03 -2.07 -3.45 -1.33
5 -0.48 -0.72 -1.08 -0.81
7 0.44 0.23 0.17 -0.35

Cactus
3 -2.37 -3.73 -2.94 -3.67
5 -3.12 -3.27 -3.53 -3.26
7 -3.72 -3.36 -3.41 -3.28

ChristmasTree
3 -1.13 -0.83 -0.83 -1.06
5 -1.26 -4.97 -4.27 -1.17
7 -3.02 -3.0 -3.26 -2.41

Kimono1
3 -3.13 -3.08 -2.22 -2.7
5 -3.0 -2.9 -2.86 -2.61
7 -3.02 -2.72 -2.62 -2.58

ParkScene
3 -4.9 -1.94 -3.87 -3.01
5 -3.3 -3.8 -3.41 -3.37
7 -3.53 -3.57 -3.43 -3.5

5.5 Summary

In this chapter, I analyze the statistical properties of nonzero coefficients in detail from the-
oretical and experimental viewpoints, and propose an efficient entropy coding method of
sparse coefficients based on the analysis. Section 5.1 reviews some conventional entropy
coding methods and related works of entropy coding. Section 5.2 analyzes the statistical
properties of the sparse coefficients in detail. First, I measure the occurrence probability
of atom indices and coefficient levels for nonzero coefficients, and clarify the distribution
characteristic of zero-run length between nonzero coefficients. Based on the distribution
characteristics, in Section 5.3, I propose a context adaptive code assignmentmethod to zero
run length and nonzero coefficient level based on the number of nonzero coefficients in the
block. Next, I show that the distribution characteristics of nonzero coefficient levels differ
depending on features of atoms, and clarify that context adaptive coding to nonzero coeffi-

94



CHAPTER 5. ENTROPY CODINGMETHOD FOR SPARSE COEFFICIENTS

(a) (b)

(c) (d)

Figure 5.17: Image quality comparison (0.30 bit/pel)
(a) original, (b) enlargement of original image, (c) decoded image (conventional[1]),

(d) decoded image (proposed)

cient levels based on feature of atoms is effective. Furthermore, we found that the zero-run
length can be coded efficiently by rearranging the atoms by their features, in Section 5.4.
The main focus of this chapter is a research on symbol generation for efficient entropy cod-
ing, rather than actual code designmethod itself such as variable length code tables or arith-
metic coding. Therefore, the amount of generated information is discussed mainly based
on entropy.
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The human visual system (HVS) is the best image processing system in the world, but it
is far from perfect. the HVS perception of images is non-uniform and non-linear, and does
not perceive any variation in the image. For example, image variations caused by quantiza-
tion errors in image coefficients are not perceptible to the human eye within a certain range.
Therefore, if the coding scheme can take advantage of some of the features of HVS, based
on which a variety of mathematical models can be built, it is the basis for the development
of image digital compression algorithms.

6.1 Human Visual Characteristics

The human eye resembles an optical system, but it is not an optical system in the common
sense and is also regulated by the nervous system. The human eye can observe images with
the following responses and characteristics.

The human eye’s response to changes in the intensity of luminance is nonlinear, and
the minimal difference in luminance intensity that is just subjectively discernible by the hu-
man eye is usually referred to as the visibility threshold for luminance. That is, when the
luminance intensity I increases, it is not felt within a certain range, until the change exceeds
a certain value I +∆I, the human eye can feel the change in luminance,∆I/I is also generally
known as contrast sensitivity. Therefore, if the error of the recovered image is lower than
the contrast sensitivity, it will not be detected by the human eye.

From the viewpoint of the spatial frequency domain, the human eye is a low-pass linear
system, because the pupil has a certain geometric size and a certain optical aberration, visual
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cells have a certain size, when the spatial plane two black dots close to each other to a certain
extent, the observer away from the black dots at a distance cannot distinguish between them,
which means that the human eye’s ability to distinguish the details of the scene is limited,
this limit is the resolution. Studies have shown that the resolution of the human eye has the
following characteristics.

1. The human eye resolution decreases when the illumination is too strong or too weak
or when the background luminance is too strong.

2. The resolution of the human eye decreases when the speed of visual target motion
increases.

3. The resolution of the human eye is worse for color details than for luminance details;
if the black-and-white resolution is 1, it is 0.4 for black-red and 0.19 for green-blue.

In addition, HVS is insensitive to high frequency signals.

These characteristics of HSV are important for the design of image coding quantizers,
and exploiting these visual characteristics allows images to tolerate larger quantization er-
rors, which can lead to reduced quantization levels and thus lower bit rates.

6.2 Frequency Characteristics of Atoms

In this section, we discuss the frequency characteristics of the atoms contained in the dictio-
nary that enable sparse representations. For easy understanding, the element of k-th atom
dk is expressed as dk(p, q) according to theM × M two-dimensional input block, and the
element of coefficient vectorx is expressed asx(k). Here, 1 ≤ p, q ≤ M . The variance of
dk(p, q) is normalized to 1. As mentioned above, the human eye is sensitive to changes in
low-frequency signals, but is not good at distinguishing changes in high-frequency signals.
Using this fact, JPEG or HEVC perform fine quantization on the coefficients for the low
frequency atoms ofDCT and coarse quantization for the coefficients on the high frequency
atoms of DCT.

Figure 6.1(a) shows the atoms of the overcomplete DCT when the block size is 8 × 8,
and Figure 6.1(b) shows the distribution of the power spectrum when the digital Fourier
transform (DFT) is performed to each atom. The center of the power spectrum in Fig-
ure 6.1(b) shows theDC component. This analysis shows that the frequency characteristics
of the atoms in overcomplete DCT are regularly arranged. On the other hand, Figure 6.1(c)
is an example of a dictionary that enables sparse representation. In addition, Figure 6.1(d)
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(a) Overcomplete DCT dictionary (b) Fourier power spectrum of (a)

(c) A Dictionary designed by K-SVD (d) Fourier power spectrum of (c)

Figure 6.1: Dictionary atoms and their Fourier power spectrum

shows the power spectrum obtained by DFT of each atom in Figure 6.1(c). The shape of
the atoms included in this dictionary reflects the characteristics of the blocks included in
the class used to design the dictionary, and it is found that their frequency characteristics
are much more complicated and have more variation than the frequency characteristics of
overcomplete DCT. Therefore, it is important to consider how to control the quantization
width of the weighting coefficients for each atom.
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Figure 6.2: 8 × 8 DCT atoms and quantization matrix in HEVC

6.3 Quantization Matrix Design

InHEVC[58], the default8×8 intra quantizationmatrix for integerDCTare derived from
the modulation transfer function (MTF) model[63]. Figure 6.2 shows an example of the
8 × 8DCT atoms inHEVC and the correspondingQ-matrix for intra coding. This means
that the quantization step width of the AC coefficient is Qratio(≡ w(k)16) times that of
the DC coefficient, where w(k) is the element of the matrix. Since the atoms of DCT are
regularly expressed in frequency, the Q-matrix can be theoretically determined. However,
manyof the atoms in the dictionary for sparse representation are very complicated, and there
has been no way to determine an appropriate Q-matrix. Therefore, in this paper, a quan-
tization matrix is designed by simply matching the complexity of the sparse representation
atoms with the complexity of the DCT atoms.

First, for eachDCT atom, the complexity ”R” is calculated. The total variation defined
by

R(k) =
∑

p

∣∣∣∣∣ ∂

∂p
dk(p, q)

∣∣∣∣∣+∑
q

∣∣∣∣∣ ∂

∂p
dk(p, q)

∣∣∣∣∣
=

M−1∑
p=1

M∑
q=1

|dk(p + 1, q) − dk(p, q)|

+
M∑

p=1

M−1∑
q=1

|dk(p, q + 1) − dk(p, q)|

(6.1)

is used for complexity calculation. Here, dk(p, q) means k-th atom. As illustrated in Fig-
ure 6.3 the total variation is defined as the sum of the absolute value of the difference be-
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Figure 6.4: Relationship between atom complexity and Q-matrix component

tween the neighboring pixels in the horizontal and vertical direction within a block. The
relationship between R(k) and the corresponding quantization matrix value w(k) is plot-
ted as shown in Figure 6.4. This gives an approximate curve w(k) = f

(
R(k)

)
.

Next, the same complexity is computed as in Equation ( 6.1) for each atom in the sparse
representation dictionary. Figure 6.5 shows some of the atoms in the sparse representation
dictionary and the complexity R of those atoms calculated by Equation ( 6.1). Clearly, R
reflects the complexity of the frequency characteristics of the atom.

Finally, by mapping the complexity on the graph of Figure 6.4, we obtain the Q-matrix
components for each atom. Figure 6.6 shows two examples of Q-matrices for sparse repre-
sentation dictionaries based on the described procedure.
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R=10.4 R=16.7 R=22.6 R=33.3

R=42.9 R=53.0 R=60.5 R=71.6

Figure 6.5: Atom examples and their complexity R

(a) Dictionary: class ♯1

15 115 17 77 23 29 60 32 29 16 84 30 36 34 30 21

24  17 16 16 17 17 17 17 17 17 17 17 17 18 18 17

17  17 16 17 16 16 17 16 17 17 16 17 18 17 17 16

16  17 16 17 16 16 17 16 16 16 18 16 17 18 15 16

16  16 18 17 16 16 17 16 18 17 16 16 17 17 16 15

15  15 16 15 15 16 15 16 16 17 15 16 15 18 18 16

16  15 16 16 15 16 15 16 15 17 18 17 17 16 16 18

21  15 19 15 18 15 17 16 17 16 15 18 17 17 18 23

18  16 17 19 18 19 18 22 18 24 17 22 19 22 22 20

21  20 25 15 17 21 18 18 16 15 15 19 21 23 15 32

27  29 23 17 23 24 21 26 17 22 16 21 28 25 24 16

25  39 26 15 29 20 22 27 16 15 17 16 15 28 24 26

63  30 27 26 31 16 15 34 25 50 24 21 29 28 35 27

41  33 30 18 32 20 41 63 19 18 22 15 23 25 16 35

67  17 17 30 58 16 40 26 18 26 29 20 27 24 31 32

71  15 31 68 29 17 36 21 24 17 17 15 16 26 20 30 

(b) Q-matrix for class ♯1

(c) Dictionary: class ♯2

17 32 24 21 25 20 30 16 19 16 18 27 20 24 15 16

20 16 16 16 16 15 15 15 15 18 16 15 15 15 15 16

16 16 15 16 19 16 16 15 15 15 15 16 20 16 16 35

16 18 22 17 21 15 15 22 24 15 17 26 16 16 16 20

16 15 15 16 15 15 15 15 16 15 15 15 15 15 15 15

19 20 16 18 16 18 19 18 19 20 19 22 32 21 19 17

16 23 19 19 18 17 20 21 20 19 16 32 27 16 16 15

17 22 17 16 18 23 20 15 18 32 16 20 20 24 15 16

23 23 23 23 19 19 18 20 21 24 21 21 25 25 17 21

27 18 20 18 18 25 20 35 21 22 24 16 24 17 15 18

28 18 25 26 28 26 19 23 26 19 23 18 17 19 19 16

34 22 19 19 26 18 22 19 16 17 15 16 16 23 18 17

54 20 25 28 22 18 16 28 22 18 16 21 17 16 16 17

25 22 17 20 16 17 16 21 20 21 16 26 17 19 21 18

76 41 24 28 34 29 22 16 21 23 15 22 17 20 16 20

26 18 19 17 19 22 16 16 26 20 18 16 16 16 18 18

(d) Q-matrix for class ♯2

Figure 6.6: Examples of the designed Q-matrix
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Table 6.1: Experimental conditions

Process Parameters / Conditions

Dictionary training

Block size 8 × 8
Classification 128 classes using dense SURF

Training samples 2688 images with 256 × 256

Designed dictionaries

Sparsity: T0 = 3
Number of classes: C = 128
Number of atoms in each:
16 × 16 overcomplete atoms

Coding
Test images “Lighthouse”, “Yacht” and “Sea”

Quantization Midtread-type linear quantization

Quantization matrix Proposed (total variation based)
and conventional (uniform)

Evaluation Picture quality PSNR, SSIM,
MOS (Absolute Category Rating)

6.4 Experiments

6.4.1 Experimental conditions

Experimental conditions are shown in Table 6.1. For training the dictionary, I used 2688
images of size 256 × 256 and generated the dictionaries consisting of 128 classes based on
dense SURF. The block size is set to 8 × 8. The dictionary for each class was generated
from an overcomplete DCT consisting of 16×16 atoms under the sparsityT0 = 3. Three
images, “Lighthouse”, “Yacht”, and “Sea” in the Kodak dataset are used as test data. None
of them belong to the training dataset.

In this experiment, the sparse coefficient x(k) is linearly quantized to xQ(k) by

xQ(k) = sign
(
x(k)

)
× ⌊|x(k)| + QP′/2

QP′ ⌋ (6.2)

QP′ = QP × w(k)/16 (6.3)

Here, QP is a quantization parameter to control the amount of generated bits, andw(k) is
the Q-matrix. The amount of generated information was calculated by the entropy based
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Table 6.2: MOS scores on ACR

Rating Image quality

5 Excellent
4 Good
3 Fair
2 Poor
1 Bad

on the probability distribution of the zero-run distance between the nonzero coefficient
positions and the probability distribution of the quantization level values of the nonzero
coefficients. Also, since there are 128 classes, the class number information is 7-bit fixed
length coding. Regarding the image quality evaluation, I performed an objective evaluation
by PSNR and SSIM, and a subjective evaluation based on the ACR (Absolute Category
Rating) method[64]. Table 6.2 shows the relationship between image quality levels and
corresponding scores in subjective evaluation experiments. The number of examinees for
the subjective evaluation is 16.

6.4.2 Experimental results

Figure 6.7 showsRDcharacteristics comparison. The coding distortionwas comparedwith
PSNR and SSIM measured for the decoded image, and the Mean opinion score (MOS)
obtained by analyzing the results of the subjective evaluation experiment. In Figure 6.7,
the evaluation values when the sparse coefficients are quantized by the proposed quantiza-
tionmatrix are shown in comparisonwith the evaluation values when all the coefficients are
quantized by the uniformquantizationmatrix. From these results, we can find that the pro-
posed method is slightly worse for PSNR and SSIM, but the proposed method is superior
from the viewpoint of subjective image quality.

The reason that the PSNRof the proposed quantizationmatrix is lower than the PSNR
of the uniformquantizationmatrix is that the proposedmethod coarsely quantizes the com-
plicated edge regions including high frequency components. The change of pixel value in
the complicated edge regions greatly contributes to the square error used in the PSNRcalcu-
lation. On the other hand, SSIM is generally considered as an objective evaluation standard
that reflects perceptual impressions.

However, in this experiment, the SSIM of the proposed method is inferior to SSIM of
the conventional method using a uniform quantization matrix, especially at lower bit rates.
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When a uniform quantization matrix is used, the quantization width becomes relatively
coarse for the gradation regions where the brightness changes smoothly, and a largely no-
ticeable false contours occurs. However, SSIM cannot reflect the subjective image quality
degradation associated with such severe false contouring. This is the reason why the SSIM
of the conventional method is not lower than the SSIM of the proposed method.
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(a) PSNR:“Lighthouse”
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(b) SSIM:“Lighthouse”
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(&%(%)*+

(c) MOS:“Lighthouse”
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(d) PSNR:“Yacht”
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(e) SSIM:“Yacht”
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(f) MOS:“Yacht”
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(g) PSNR:“Sea”
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(h) SSIM:“Sea”
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(i) MOS:“Sea”

Figure 6.7: Picture quality comparison
Top row: “Lighthouse”, middle row: “Yacht”, bottom row: “Sea”,
left column: PSNR, middle column: SSIM, right column: MOS
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(a) original:“Lighthouse” (b) uniformQ-matrix (c) proposed Q-matrix

(d) original:“Yacht” (e) uniformQ-matrix (f) proposed Q-matrix

(g) original:“Sea” (h) uniformQ-matrix (i) proposed Q-matrix

Figure 6.8: Comparison of the decoded image under the same bitrate (0.05 bpp)

Figure 6.8 shows the decoded images under the same compression ratio. From the view-
point of subjective image quality, it is clear that the perceptually noticeable false contours
occurred in the regions having gradually changing luminance value by the conventional
quantization. On the other hand, the method using the proposed quantization matrix can
reproduce the luminance change close to the original image. The effectiveness of the pro-
posed quantizationmatrix was verified becauseMOS is improved compared toMOS of the
conventional method, especially at medium and low bit rate.
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6.5 Summary

In this chapter, I have proposed a new quantization matrix design method using total vari-
ation of atoms for sparse representation-based image coding.

In section 6.1, the characteristics of theHumanVisual System (HVS) is introduced, and
frequency characteristics of atoms in sparse dictionary were analyzed in section 6.2.

Followed by section 6.3, a method based on the results of analyzation, for quantizing
sparse coefficients using Q-Matrix is proposed.

In section 6.4, experimental results show that subjective image quality provides aMOS
that is 0.2 to 0.3 points higher than conventional uniform quantization, and the proposed
method can provide higher coding efficiency from a point of perceptual picture quality.
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7.1 Summary

Even today, when the communication speed and environment are constantly upgrading
and improving, image compression remains an issue that cannot be ignored in the face of
the rapid growth of the visual information explosion. Among these issues, transform cod-
ing, as an indispensable part of image compression solutions, has been attracting the interest
of researchers. Transform dictionaries such as DCT, which are designed based on statisti-
cal perspectives, are difficult to satisfy the optimization of transformation efficiency for a
particular image. To cope with these problems, this dissertation attempts to develop new
image compression methods by importing sparse coding dictionary generation algorithms
into transform coding to further improve the efficiency of image compression.

For the procedure of transform coding, we note that the current techniques and litera-
ture can be divided into two categories. One of which is to generate a transform dictionary
by structurally decomposing the assumed data distribution model, such as Fourier trans-
form, discrete cosine transform, wavelet transform. This type of algorithm has an advan-
tage in terms of computational capacity due to the existence of structured modeling, and is
able to achieve high speed computation of results with relative ease. In contrast, the idea of
generating dictionaries from real data through machine learning, including maximum like-
lihood, MOD, PCA, and K-SVD, is relatively complex. However it can be more adapted
to the structure of the target data itself than the dictionaries generated by the former cate-
gory, rather than an abstract predictive model. We believe that the latter has the potential
to further improve the efficiency of existing transform coding.
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Sparse representation for images

Among the learning dictionary generation algorithms in recent years, the K-SVD algorithm
is often mentioned as a milestone which draws on the design ideas of the classical classifi-
cation algorithm k-means and greatly optimizes the computational speed of the algorithm
for dictionary generation. K-SVD algorithm is used to generate sparse dictionaries. We ana-
lyzed the performance of dictionaries generated for each image, a single dictionary generated
from multiple images, and a multi-class dictionary generated from multiple images. In the
first approach, the designed dictionaries are overly dependent on the original image, mak-
ing it difficult to apply them to other images. The single dictionary generated by the second
approach converges to a statistically optimal average model, i.e., a DCT-like feature. The
dictionary is too versatile to code efficiently for a specific image. From a viewpoint of effi-
cient representation of various images, the third approach is the most balanced method.

Dictionary design based on Multi-class K-SVD with iterative class
update

Acommonproblemwith some existingproposals for generatingmulti-class dictionary from
many images is that the classification result and the performance of the final generated dic-
tionary are independent and delinked. In otherwords, if the performance of the final dictio-
nary generated is impacted by the classification results, it is difficult for existing algorithms
to actively avoid this pitfall. To address this problem, I proposed a dictionary design algo-
rithmwith class iterative update function. And I experimentally compared the performance
of this algorithm with the one without class iteration to prove the effectiveness of the pro-
posal.

Entropy coding method for sparse coefficients

The coefficients generated by the sparse dictionary have very different characteristics from
thoseof the coefficients encodedby the traditional transformation encoding. Inotherwords,
it is not an appropriate idea to apply the traditional coefficient encoding directly to the
sparse coefficients. This dissertation discussed this problem. I first analyzed the statisti-
cal characteristics of the sparse coefficients and the distribution patterns of the valid data
(non-zero values), and then designed and proposed an adaptive entropy coding algorithm
according to the coefficient characteristics. Its contribution to the coding performance im-
provement is experimentally confirmed.
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Quantization method for sparse coefficients

In addition to entropy coding, another important component of the whole procedure of
image compression is quantization. The main optimization of quantization parameters for
the transform coefficients in international standardization of image compression is to use a
technique called QuantizationMatrix (Q-Matrix), to quantize the coefficients for different
atoms with different quantization steps. This technique takes into account the fact that the
human visual system is insensitive to change of high frequency signals in the spatial domain
and sensitive to change of low frequency signals. That is, the quantization step width of the
coefficients corresponding to atoms with different frequency features varies based on quan-
tization matrix values. Quantization matrices for the coefficients corresponding to atoms
with regular frequency characteristics such asDCThavebeen studied extensively and are op-
timally designed from a point of HVS. However, the frequency characteristics of the atoms
contained in the sparsely expressible dictionary obtained by K-SVD are extremely compli-
cated, and it was not clear what kind of quantization step width should be used to quantize
a coefficient corresponding to each atom. In this dissertation, a new quantization matrix
design method for sparse coefficients was shown by quantifying the spatial frequency fea-
tures of each basis contained in a dictionary that enables sparse representation. And it was
experimentally verified that this Q-Matrix design method plays a positive role in enhancing
the subjective image quality of the compressed image.

7.2 Future Directions

Prediction residual

The training samples used in existing work are taken from image data, where it is well con-
sidered that there is a large amount of visual signal redundancy in image data, and machine
learning is able to abstract them into dictionary atoms with high representational capabil-
ity. We also note that in existing efficient video compression techniques, the main trans-
form coding object is the predicted residuals, because the redundancy of the self-similarity
of the image can be eliminated in advance through prediction, and the residuals are further
squeezed in the transform coding process to achieve high compression efficiency.

It should be noted here that the fact which the residual data can be further compressed
by transform coding is a proof that some structural similarity among the data is not deleted
cleanly in the prediction process, or a portion of the residual data with similar structure is
generated.
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Nevertheless, it can be predicted that in order to effectively generate a usable dictionary
from the residual data by machine learning means, a much larger amount of training data
than that of the real data is required. And, another feasible approach is to perform some
special processing on the residual data in the data pre-processing stage to reduce the learn-
ing difficulties caused by the sparsity of the residual data. Learning a sparse representation
dictionary from the intrinsically sparse data is a challenging topic in the field of machine
learning.

Application to Videos

The main object of this work is still image compression, so a natural extension of this di-
rection is to apply it to the field of video compression. Video has an additional dimension
- time - than static graphs, so naturally there is redundancy in the time direction, and cur-
rent international standards have proposedmotion compensationprediction techniques for
such redundancy. Similar to the directions mentioned in the previous subsection, extend-
ing the proposal of this dissertation to the residuals of motion-compensated prediction is
also a research direction worth discussing.

Switching strategy under RD optimization

The dictionary proposed in this dissertation involves the selection ofmany parameterswhen
it is generated and applied to image compression. After comparing the experimental results,
I have proposed the globally optimal recommended values within the scope of the experi-
mental parameters. However, if these parameters can be dynamically adjusted according to
the data they correspond to, i.e., it is possible to dynamically switch between dictionaries
generated with different parameters, which will offer the possibility to further improve the
compression efficiency.

Class merge / atoms rearrange module

In the dictionary update stage, we made adjustments to the data classification based on the
performance of the dictionary generated in the previous iteration. During the adjustment
process, we noted some classes whose usage may have been affected in some way. They
may have been learned from uncommon image blocks (not often used), or there may have
been some similarity between block features that several classes are good at representing
(thinned out in usage ratio by other classes). This leads to an interesting direction of re-
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search - whether a module could be added to the update process to determine the similarity
between dictionaries of different groups, similar to the coefficient of determination[65] or
correlation coefficient[66] as in regression analysis, to dynamically planwhether the existing
number of classes is appropriate or not.

Moreover, once a decision ismade tomerge some classes, the atomswithin themneed to
be rearranged or eliminated to some extent, similar to the pruning process in deep learning,
so this rearrangement strategy is worth exploring.
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