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Abstract

Cumulative prospect theory (CPT) has become one of the most popular approaches

for evaluating the behavior of decision makers under conditions of uncertainty. Sub-

stantial experimental evidence suggests that human behavior may significantly deviate

from the traditional expected utility maximization framework when faced with uncer-

tainty. The problem of portfolio selection should be therefore revised when the investor’s

preference is for CPT instead of expected utility theory.

CPT can describe the behavior of bounded rational decision makers in a psycho-

logically more realistic way, over the past decade, researchers in the field of behavioral

economics have repeatedly considered how CPT should be applied in economic settings;

these efforts are now bearing fruit. Although CPT has received a great deal of atten-

tion, to the best of our knowledge, little research has investigated the portfolio choice

problem based on CPT due to the complexity of CPT function.

The purposes of this dissertation evaluated the problem of identifying the optimal

portfolio consisting of one riskless asset and multiple risky assets under CPT. The CPT

function is generally non-convex, non-concave and non-smooth, which means that tra-

ditional optimization methods such as Lagrange multipliers and convex duality do not

work and the CPT function may have many local maxima. A real-coded genetic al-

gorithm was to be used to solve the problem of portfolio choice. To overcome the

limitations of RCGA and improve its performance, an adaptive method and a new se-

lection operator were introduced. Computational results show that the new method is

a rapid, effective, and stable genetic algorithm with the influence of various parameters

on the CPT values being presented.

A method which couples scenario techniques for simulating the scenario of the real

stock market with a genetic algorithm to determine the optimal solution was presented.

The major challenge is to provide data on mathematical models in determining optimal

solutions to address uncertainties in the field of financial investment. The effectiveness

of the mathematical models hinges on the quality of the scenarios. This dissertation

focused on three different variants of the bootstrap method for scenario generation.

Bootstrap method being a form of resampling in statistics, it is a highly effective tool

in the absence of a parametric distribution for a set of data and suitable for assessing

the distribution properties of some statistic of such data.
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Financial regulators now propose some risk management requirements in terms of

loss. Mathematically，risk management is a process of how to control the loss distribu-

tions. The value-at-risk (VaR) and conditional value-at-risk (CVaR) are popular tools

for managing risk. This dissertation analyzed the portfolio optimization under CPT

with risk constraints, deviation constraints, and other constraints. And, the optimal

portfolios under various constraints were given in this dissertation. It found that CPT

investor with constraints of risk and deviation significantly changed their investment be-

havior. Moreover, due to the constraints of risk and deviation, the CPT value decreased

and the investment income declined.
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Chapter 1

Introduction

1.1 Portfolio Selection

In finance, portfolio choice is a process of allocating one’s investable wealth to various

financial assets according to some optimality criteria determining the best possible trade-

off between the return (or utility) and certain constraint conditions，such as resources

or risk. Further, there are two main objectives: one question is that how to determine a

proportion to invest in each type of asset within the portfolio for receiving the highest

possible return; the other one is that appropriate level of risk should be considered for

given return.

Modern portfolio theory (MPT), or mean-variance analysis, has been proposed by

Markowitz (1952) to provide the theoretical background for the relationship between

the risk and return of a portfolio. Also the theory provides a mathematical framework

assuming that investors are risk averse and make choice in terms of the expected return

and its variance, giving important insight that an asset’s return and risk should not be

assessed by itself, and contributing to a portfolio’s overall return and risk. An efficient

frontier curve is constructed by varying the weights for each asset and recalculating the

expected and standard deviation. MPT has a high value for portfolio management,

because rational investors will always choose to invest on this frontier according to

trade-off between return and risk, i.e., risk attitude. MPT has been thought of as the

beginning of modern financial economics, because there was no concept of investment

portfolio before the 1950s (Rubinstein, 2002).

Sharpe ratio, one of the most famous concepts in finance, was proposed by Sharpe

(1966) based on the further expansion of MPT. Under MPT, people has realized that

portfolio problems should be taken into account the efficient frontier. According to their
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risk attitudes, people can select one point on the efficient frontier according to tradeoff

between risk and return. As a risk-free asset is introduced to the mix, there is just one

portfolio of risky assets to be held by people. Capital allocation line (CAL) combining

the risk-free asset with the risky assets should therefore be fully considered when people

make choice.

Although the fact of maximizing expected return has never been disputed, it is

difficult to have unified standard for judging the risk. Thus different people have different

understanding about the it. Markowitz used the standard deviation of return as a risk

measure. However, the using standard variance, or variance, has some drawbacks. Thus

it aroused some arguments about standard variance as a good indicator for measuring

risk and many new methods for measuring risk have been developed. Value-at-risk (VaR)

as one of the most popular tools has emerged in 1994(JPMorgan, 1994, 1997). Jorion

(2000), Linsmeier and Pearson (2000), Alexander and Baptista (2002),Chance (2004),

and Hull (2008) noticed that VaR has become a popular risk management tool by

corporate treasurers, dealers, fund managers, financial institutions, and regulators such

as Basle Committee on Banking Supervision. Alexander and Baptista (2002) related

VaR to mean-variance analysis and examined the economic implications of using a mean-

VaR model for portfolio selection. They found that mean-variance efficient portfolios

with the higher variance portfolio might have less VaR. Mean-VaR model, or mean-VaR

efficient frontier, was accepted as a kind of popular tools for maximizing profits at given

a specific VaR level.

However, the VaR as a measure for risk is under debate. Rockafellar and Uryasev

(2000) introduced a new method, called Conditional value-at-risk (CVaR), to manage

risk. Although CVaR is similar to VaR risk measurement, they are based on different

mathematical properties. Artzner et al. (1999) showed that VaR is not a “coherent”

measure of risk because it fails to satisfy the“subadditivity property.”Rockafellar and

Uryasev (2000) and Rockafellar and Uryasev (2002) showed that CVaR is superior to

VaR in optimization applications. For these reasons, some researchers have thought that

CVaR should be used rather than VaR as a tool of measuring risk. However, the other

scholars have proposed that there are advantages and disadvantages to both approaches,

even though conclusions made from both of them may be contradicted. (Alexander and

Baptista, 2004, Sarykalin et al., 2008).

Beyond MPT, expected utility theory (EUT) is a widely accepted as a well-known

theory for explaining portfolio choice when faced with uncertainty. In fact, EUT had a
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long history since 18th century and was originated from gambling in casinos. At that

time, people thought that rational gamblers should be based on the expected return of

outcomes, i.e. expected value theory. However, this theory has been questioned by the

famous St. Petersburg paradox. Daniel Bernoulli gave an explanation that people do

not make decisions based on earnings, but on the moral expectations of income. As a

result, this explanation is the prototype of expected utility theory (Bernoulli, 1954).

EUT was formally developed by Neumann et al. (1944) in their book “Theory of

Games and Economic Behavior”, saying the main concern of EUT is the representation

of individual attitudes towards risk and it has been a predominant model for portfolio

choice based on the assumption that people are rational (Karni, 2014). Under EUT,

people start to evaluate wealth according to final asset positions and treat probability

objectively. Furthermore, people are of uniformly risk aversion. There are many papers

discussing the portfolio optimization under EUT, such as Merton (1969), Samuelson

(1969), Duffie (2010),Karatzas et al. (1998), Merton and Samuelson (1990), Föllmer

and Schied (2011).

These theories have been very useful in modeling portfolio choice and substantial

empirical and experimental evidence (such as the paradoxes outlined by Allais (1953) and

Ellsberg (1961) has revealed that they do not reflect reality. Because of the assumption

that people are rational, these theories merely demonstrate how people should behave

instead of their actual portfolio choices under risk. Prospect theory (PT) proposed by

Kahneman and Tversky (1979) is still widely viewed as the best available description

of people’s actual behavior when evaluating risk in experimental settings, particularly

when psychological insights are incorporated (Barberis, 2013).

Inspired by Quiggin (1982), Tversky and Kahneman (1992) further proposed cumu-

lative prospect theory (CPT) to avoid certain drawbacks inconsistent with first-order

stochastic dominance. CPT can account for diminishing sensitivity, loss aversion, and

different risk attitudes. Some financial phenomena and the paradoxes of Allais and

Ellsberg cannot be explained by traditional theories like EUT. Therefore CPT offering

feasible interpretations is widely applied. Benartzi and Thaler (1995) gave explana-

tion for the famous equity premium puzzle using CPT. Because CPT can describe the

behavior of bounded rational decision makers in a psychologically more realistic way,

over the past decade, researchers in the field of behavioral economics have repeatedly

considered how prospect theory should be applied in economic settings. These efforts

are now bearing fruit (Barberis, 2013).
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CPT has received a great deal of attention, to the best of our knowledge, very few

papers have used CPT to solve the problem of portfolio choice. Stracca (2002) considered

the optimal allocation of risky assets from identically distributed and symmetric sources

under CPT, and Levy and Levy (2004) showed that the mean-variance (MV) and PT-

efficient sets almost coincide with each other under the normal distribution assumption,

allowing investors to use the MV optimization algorithm to create PT-efficient portfolios.

Bernard and Ghossoub (2010) studied the optimal portfolio choice for investors under

CPT, and derived some properties of the optimal holding. He and Zhou (2011) developed

a new measure of loss aversion, which is the criterion for the well-posedness of the model

for large payoffs, and obtained optimal single-period solutions under CPT. Pirvu and

Schulze (2012) provided a two-fund separation theorem for risk-free assets and the risky

portfolio in which the excess return follows an elliptically symmetric distribution under

CPT.

The purpose of this dissertation is to study how CPT decision makers optimize their

portfolios. And the effects of certain parameters of CPT about portfolio choices and

final returns are analyzed.

1.2 Main objectives of the dissertation

The purpose of this dissertation is to identify potential benefits of behavior based CPT

model depending on different market situations in comparison with traditionally ac-

cepted portfolio optimisation models. The main objectives are as follows:

1. The appropriate solution approaches were developed to solve the portfolio choice

problem under CPT when the joint distribution of portfolio returns is subject to multi-

variate normal distribution.

2. The appropriate solution approaches were developed to solve the portfolio choice

problem under CPT were evaluated when return of each asset has different types of

probability distributions.

3. The performances of portfolio choice under CPT with VaR or CVaR constraints

and other constraints were investigated in details.

1.3 Thesis Structure

The dissertation comprises of six chapters, a bibliography and appendices.

Chapter 1 is an auxiliary part of the present work that provides background infor-
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mation, my frame work of present study and value together with contributions.

Chapter 2 provides a literature survey for the main theories and mathematical for-

mulations of the considered portfolio optimisation models as well as the definitions of

some risk measures, respectively.

Chapter 3 presents an operational model for portfolio selection under CPT and

proposes a real-coded genetic algorithm (RCGA) to solve the problem of portfolio choice.

To overcome the limitations of RCGA and improve its performance, an adaptive method

was developed and a new selection operator was proposed. Computational results show

that the new method is a rapid, effective, and stable genetic algorithm.

In Chapter 4 we study the portfolio selection problem under CPT and present a so-

lution for portfolio optimization, the method of coupling scenario generation techniques

with a genetic algorithm. Computational results show that the proposed method solves

effectively the portfolio selection model. We compare the portfolio choices of CPT in-

vestors based on different bootstrap techniques for scenario generation and empirically

examine the impact of reference points on investment behavior.

In Chapter 5 we study the portfolio behavior of CPT investor with risk constraints

of VaR or CVaR and other constraints.

In Chapter 6 we describe the most important findings and conclusion. The main

contribution of this dissertation as well as related future work are presented in this

chapter.
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Chapter 2

Literature review

2.1 Modern portfolio theory

2.1.1 Mean and Variance analysis

Modern portfolio theory (MPT) provides a mathematical framework assumes that in-

vestors act rationally and has preferences in the light of the mean and the variance of

returns, which are the random variable. That is investors cannot predict the future

return accurately but can predict the expected value of returns according to the prob-

ability distribution of returns. According to the probability theory, the expected value

is a kind of distributional average.

Except returns, investors also care about the risk. Markowitz (1952) introduced the

variance or standard deviation of returns as a risk measurement. The variance of returns

reflects squared deviations from the mean so large deviations above or below the mean.

The standard deviation of returns is the square root of the variance.

Let Ri denote the return on asset i.

Ri =
Pi,t+1 − Pi,t

Pi,t
(2.1)

where Pi,t and Pi,t+1 represents the price of asset i at period t and t+ 1 respectively.

Let the return of asset is a bounded discrete random variable and has a probability

mass function g(ri). The expected value of returns is denoted as follows:

E(Ri) = µi =
∑

rig(ri) (2.2)

Let the return of asset is a bounded continuous random variable and has a probability
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density function f(ri). The expected value of returns is denoted as follows:

E(Ri) = µi =

∫ +∞

−∞
rif(ri) dri (2.3)

The variance of Ri, denoted by V ar(Ri), is defined as follows:

V ar(Ri) = σ2
i = E[(Ri − µi)

2] (2.4)

When there are n risky assets, the investor wants to apportion his budget to these

assets by deciding on a specific allocation x = (x1, · · · , xn)T , xi ≥ 0 (i.e. short sales

are disallowed) and
∑n

i=1 xi = 1 (budget constraint) 1. The multi-assets investment

problem is defined as follows:

R =
n∑

i=1

xiRi (2.5)

The expected value of portfolio return is

E(R) = µ =
n∑

i=1

xiE(Ri) =
n∑

i=1

xiµi (2.6)

The variance of portfolio return is

σ2 = V ar(R) =

n∑
i=1

n∑
j=1

xixjσij =

n∑
i=1

x2iσ
2
i +

n∑
i=1

n∑
j=1
j ̸=i

xixjσij (2.7)

When i ̸= j,σi,j represents

Cov(Ri, Rj) = E[(Ri − µi)(Rj − µj)] (2.8)

When i = j,σii represents σ2
i .

Equation (2.7) can be written

σ2 = xTΣx (2.9)

where x is a column vector whose components are the xi, xT is the row vector that is

the transpose of x, and Σ is the covariance matrix, which is positive definite matrix.
1Throughout the dissertation boldface characters denote vectors.
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2.1.2 Efficient frontier

The efficient frontier, or portfolio frontier, is the curve that shows all efficient portfolios

under frame of MPT introduced by Markowitz (1952). Formally, efficient frontier is the

set of portfolios that maximizes the expected return at given risk or minimizes the risk

at give expected return.

To obtain the efficient frontier people firstly have to minimize the risk at given

expected return µ0 as follows:

minσ2 = xTΣx (2.10)

s.t.

n∑
i=1

xiE(Ri) = µ0,

n∑
i=1

xi = 1

xi ≥ 0

Then varying µ0 between the return on the minimum variance portfolio and the

return on the maximum return portfolio traces out the efficient frontier, as shown in the

Figure 2.1.

E(R)

0 σσ
min

Efficient Frontier 
of Risky Assets

μmax

Figure 2.1: The efficient frontier

The efficient frontier can be obtained in a similar way by using the following model:
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maxE(R) =

n∑
i=1

xiE(Ri) (2.11)

s.t. xTΣx = σ2
0,

n∑
i=1

xi = 1

xi ≥ 0

Investors can choose any point on the efficiency curve according to their attitude

toward risk. As mentioned above, an investor can select a point whose has the minimum

variance or maximum return on the efficient frontier curve. People also can invest in

the portfolio at point S in Figure 2.2 where has maximum return per unit risk.

Take equation (2.11) example, it can be solved by Lagrange multiplier:

x =
B(AE0 −B)

D

Σ−1µ

B
+

A(C −BE0)

D

Σ−11
A

(2.12)

where 1 = (1, ..., 1)T , A = 1TΣ−11, B = 1TΣ−1µ ,C = µTΣ−1µ,D = AC −B2.

Markowitz (1959) proposed a method to model the willingness to pay (WTP) for

risky assets as a tradeoff between their returns and risk, i.e., investors will try to minimize

level of risk at given return.

WTP (R) = E(R)− bV ar(R) (2.13)

where b denotes the property of the tradeoff between the maximization of return and

minimization of risk and serves as an individual difference index of risk attitude (Glim-

cher and Fehr, 2013).

The idea of tradeoff between return and risk is widely applied in finance (Sharpe,

1964, Levy and Markowitz, 1979). Some utility functions have interpretation about

the tradeoff of between return and risk. And different utility functions have different

functional forms for risk (Jia and Dyer, 1996).
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The WTP portfolio choice model is, therefore,

max
x

WTP (R) (2.14)

s.t.

n∑
i=1

xi = 1

xi ≥ 0

2.1.3 Sharpe ratio

Roy (1952) introduced a method that maximizing the ratio before sharpe ratio was put

forward as follow
m− d

σ
(2.15)

where m is expected gross return, d represents, in a sense, disaster level and σ is standard

deviation of returns.

In finance, Sharpe ratio is a way to test the performance of investment by adjusting

for its risk. Sharpe (1966) introduced Sharpe ratio when a risk-free asset to the mix

defined as follows

Sharpe ratio =
µ− r0

σ
(2.16)

where r0 represents the rate of risk-free asset.

Sharpe ratio means the excess return (the expected return over risk-free rate) per

unit of risk and is thus the concept of relative value. The portfolio with a higher sharpe

ratio provides better return for same risk. Graphically, the maximum Sharpe ratio on

the efficient frontier curve is the point M where a line through the r0 is tangent to the

efficient frontier. As shown in Figure 2.3. The line combining r0 and M is called the

capital allocation line (CAL) and represents the combination of the market portfolio

and the risk-free asset. The CAL tells investors a truth that they can earn how much

excess returns for accepting additional risk.

2.2 Measures of risk

2.2.1 Variance and Semivariance

The concept of risk is an important factor to be considered in the portfolio selection

problem. Markowitz proposed to measure the risk via the deviation from the mean, i.e.,

10
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0 σ
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Figure 2.2: The Sharpe ratio

E(R)

0 σ
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M

σM
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Figure 2.3: Capital market line
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variance or standard deviation. By using covariance between all pairs of risky assets,

risk level can be measured. The major contribution by Markowitz is to measure the risk

of a portfolio by means of joint distribution of returns of all assets and this is the first

mathematical formalization of the idea of diversification of investments for reducing

risk 2. The variance, as a measure of risk，has an advantage of simplicity that it is

very important to portfolio selection problem. However, there are some criticism about

variance as a risk measurement.

Variance measures the upside and downside risk as well. Downside risk is the risk

being below the expected return, which is the financial risk associated with losses. Gen-

erally, people do not treat gains and losses equivalently and pay more attention to

downside risk (Horcher, 2011, Nawrocki, 1999). Therefore some scholars suggested that

semivariance should be a tool to measure risk (Porter, 1974, Hogan and Warren, 1974,

Estrada, 2007, Jin et al., 2006). Semivariance here refers to downside risk rather than

upside risk. Mathematically, the semivariance is expressed as follow:

SV ar(R) = E[(R− E(R))21{R≤E(R)}] (2.17)

where 1{R≤E(R)} is an indicator function.

Variance is the concept of second moment and may ignore the risk from the higher

moments of the probability distribution. The model of Markowitz is applied only to

the case of elliptic distributions, such as normal or t-distributions with finite variances,

which seems somewhat different from reality. It has been proved that the distributions

of returns on many risky assets are skewed, leptokurtic, and heavy tail 3.

2.2.2 VaR

VaR has become one of the standard instruments to measure risk for both banks and

other financial institutions. Regulators such as the Bank for International Settlements

recommend VaR-measures to determine capital adequacy requirements. Generally, in-

vestors seldom allow their potential loss to exceed a certain level. Consequently, VaR is

used as a risk measurement on portfolio problem to control the risk. VaR has become

an industry standard for risk measurement and percentile based indicator (JPMorgan,

1994). It is usually defined as the worst loss over a target horizon that will not be
2It is noteworthy that Irving (1906) has firstly suggested to use variance as a measure of economic risk.

Marschak (1938) suggested using the means and the covariance matrix of consumption of commodities
as a first order approximation in measuring utility.

3Multivariate normal distribution is attractive because the association between any two random
variables can be expressed by their marginal distribution and correlation coefficient.
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exceeded with a given level of confidence (Jorion, 2006).

For a target horizon and given a confidence level c ∈ (0, 1), the V aR at confidence

level c is the smallest value l such that the probability that the loss L exceeds l is no

larger than (1− c). Mathematically, V aR can be expressed as follow:

V aRc(x,R) = inf{l ∈ R : P (L > l) ≤ 1− c} (2.18)

L is a random loss variable with the cumulative distribution function as follow:

FL(l) = P (l ≤ l) (2.19)

Some scholars consider that VaR is a natural progression from MPT in some as-

pects(Dowd, 2002). However, there are some differences as follows:

• MPT explains the risk according to the mean and standard deviation of returns,

whereas VaR interprets risk in terms of the maximum likely loss.

• MPT assumes that the returns follow normal distribution, while VaR can work at

a wider range of possible distributions.

• MPT responds to only market risks, while VaR can be used not only for market

risk, but also for credit, liquidity and other risks.

There is growing interest in VaR and for various applications including financial institu-

tions, regulators, nonfinancial corporations, and asset managers. Any institution, which

is susceptible to risk, can use the VaR to report risk information and to control risk even

manage risk. Institutional investor, such as Chrysler pension fund are now turning to

VaR to manage their financial risk. The Basel Committee on Banking Supervision,the

U.S. Federal Reserve, the U.S. Securities and Exchange Commission, and regulators in

the European Union has converged on VaR as benchmark risk measure(Jorion, 2006).

According to equation (2.18)，an investor can control the risk for minimizing the

VaR with constraint of expected return as follows:

min
x

V aRc(x,R) (2.20)

s.t. xTE(R) ≥ µ0,

xT1 = 1
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where 1 = (1, 1 . . . , 1)T , µ0 represents the requested expected return.

Some scholars studied the problem of maximizing the expected utility under a VaR

constraint and mean-VaR model has been proposed (Campbell et al., 2001, Alexander

and Baptista, 2002, Consigli, 2002). Until now, the mean-VaR model, a method to

decide optimal selections in terms expected return and VaR, remains as an important

research subject of portfolio selection under riskTsao (2010), Sheng et al. (2012), Ali

and Jilani (2014). The mean-V aR model can be given as follow:

max
x

xTE(R) (2.21)

s.t. V aRc(x,R) < l

xT1 = 1

where 1 = (1, 1 . . . , 1)T .

2.2.3 CVaR

VaR is a popular risk measurement although some of its mathematical properties have

influence on application for optimal portfolio problem, and can not respond to the

magnitude of the possible losses below the threshold it identifies.

Generally, the criticism of VaR is manifested mainly in three aspects. Firstly, VaR

only measures the most loss if the tail event does not occur, i.e., VaR fails to provide

information beyond the tail of distribution which may be exposed to the danger of a very

large loss. Secondly, VaR sometimes contradicts the sub-additivity property of coherent

risk measure, which is proposed by Artzner et al. (1999). This means that aggregating

individual risks do not increase the overall risk4. Thirdly, it is difficult to optimize the

portfolio problem based on VaR if the returns or losses are specified according to the

scenarios. In fact, VaR function is non-smooth and non-convex with respect to the

portfolio ratio x and exhibits multiple local extrema (Topaloglou et al., 2002).

Some scholars suggested that conditional value-at-risk (CVaR) is an alternative per-

centile measure of risk(Pflug, 2000, Rockafellar and Uryasev, 2000, 2002). CVaR, unlike

VaR, can quantify the losses beyond VaR. CVaR is defined as the conditional expec-

tation of losses exceeding VaR at a given confidence level. CVaR at confidence level

c ∈ (0, 1) for loss L of a portfolio is defined to be

CV aRc = E(L|L ≥ V aRc) (2.22)
4If the distribution is elliptical, then VaR is a coherent measure.
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According to equation (2.22), an investor can control the risk for minimizing the

CVaR with constraint of expected return as follows:

min
x

CV aRc(x,R) (2.23)

s.t. xTE(R) ≥ µ0,

xT1 = 1

where 1 = (1, 1 . . . , 1)T , µ0 represents the requested expected return.

Similarly, the mean-CV aR model can be given as follow:

max
x

xTE(R) (2.24)

s.t. CV aRc(x,R) < l

xT1 = 1

where 1 = (1, 1 . . . , 1)T .

Convexity can be preserved in the case of optimizing problems. The random variables

are discrete under various scenarios, then CVaR optimisation can be expressed as a linear

programming(Rockafellar and Uryasev, 2002).

2.3 Expected utility theory

2.3.1 Expected utility theory

In the mid-seventeenth Century, people began to use the expected value theory to con-

sider gambling problem, which was the problem of maximization of expected value of

gamble X as follows:

EV (X) =
∑
i

pixi (2.25)

However, St. Petersburg paradox has suggested that human behaviors may signif-

icantly deviate from expected value theory. According to the paradox, people were

unwilling to pay too much money for a gamble in which they can get 2n ducats when

the coin lands “head”on the ground for the first time at the n-th throw. Thus it is

noteworthy that the gamble has infinite expected value as follow:

E =
1

2
· 2 + 1

4
· 4 + · · ·+ 1

2n
2n + · · · = 1 + 1 + · · · = ∞ (2.26)
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The original idea of expected utility theory was first proposed by Daniel Bernoulli

in 1738 to solve St. Petersburg paradox by using expected utility instead of expected

value (Bernoulli, 1954). As a decision model under risk, expected utility theory has

attracted wide attention until Neumann et al. (1944) suggested that the theory could

be explained systematically by a set of axioms on preferences.

Suppose that people are faced with a choice between two outcomes, A1 and A2.

A1 ≻ A2 means that A1 is strictly preferred to A2, that is, people are willing to select

the A1 when A1 and A2 are offered. A1 ∼ A2 means that people evaluate the two

outcoms the same, i.e. indifference. A1 ⪰ A2 means that people prefer A1 or are

indifferent between A1 and A2.

Neumann et al. (1944) proposed the four axioms as follows:

Axiom 1 (Completeness): For all A1, A2, exactly one of the following holds:

A1 ≻ A2 , A2 ≻ A1, or A1 ∼ A2.

Axiom 2 (Transitivity): If A1 ⪰ A2, A2 ⪰ A3, then A1 ⪰ A3.

Axiom 3 (Continuity): A1 ⪰ A2 ⪰ A3, and there exists a probability p ∈ [0, 1],

then pA1 + (1− p)A3 ∼ A2.

Axiom 4 (Independence): If A1 ∼ A2, for any A3 and p ∈ [0, 1], (A1, A3, p) ∼

(A2, A3, p)

Axiom 5 (von Neumann–Morgenstern utility theorem): If Axiom 1-4 are

satisfied, there exists a function u(·) assigning to each outcome Ai a real number such

that,

A1 ⪰ A2 iff u(A1) ≥ u(A2),

u(A1, A2, p) = pu(A1) + (1− p)u(A2) (2.27)

Pennacchi (2007) has given further interpretation of axioms above and proof of how

they lead to the von Neumann and Morgenstern EU decision rule.Ingersoll (1987), Huang

and Litzenberger (1988) and Levy (2011) also provided some similar descriptions. Here,

we refer to von Neumann–Morgenstern utility function simply as the expected utility

function (EUT).

EUT was developed by John von Neumann and Oskar Morgenstern in an attempt

to define rational behavior when people face uncertainty. This theory contends that

individuals should act in a particular way when confronted with decision-making under

uncertainty. In this sense, the theory is “normative,”which means that it describes

how people should rationally behave. This is in contrast to a“positive”theory, which
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characterizes how people actually behave.

Indeed, EUT has given the simplicity and numerical modeling tool. Consequently,

their axioms have made utility theory a powerful tool for studying the decision making

behavior.

2.3.2 Risk attitudes

It is believed that people have different attitudes to risk: risk-averse, risk-seeking and

risk-neutral. The utility function is useful in defining risk preferences. Consider the

prospect

(a1, p; a2, q) (2.28)

where outcomes a1, a2 ≥ 0 and probability q = 1− p.

People’s preferences can be described by relationship between the utility of the ex-

pected value of a prospect and the expected utility of the prospect, as shown in the

Figure 2.4 .

a1 a2E(a)

u3(pa1+qa2)=pu3(a1)+qu3(a2)

Wealth

Utility

pu1(a1)+qu1(a2)

u2(pa1+qa2)

0

risk-averse

risk-neutral

risk-seeking

u1(pa1+qa2)

pu2(a1)+qu2(a2)

Figure 2.4: Utility functions and risk attitude.

If

u1(pa1 + qa2) > pu1(a1) + qu1(a2) (2.29)

then the person is type of risk-averse.

17



If

u2(pa1 + qa2) < pu2(a1) + qu2(a2) (2.30)

then the person is type of risk-seeking.

If

u3(pa1 + qa2) = pu3(a1) + qu3(a2) (2.31)

then the person is type of risk-neutral.

For EUT, decision makers’attitudes towards uncertainty are wholly modeled by

the value of utility functions defined on final asset positions. Every rational decision

maker is assumed to make decisions following the principle of maximizing the value of

his expected utility. The expected utility of a choice is the sum of the utility functions

of possible N outcomes weighted by the corresponding probabilities:

N∑
i=1

piu(xi) (2.32)

Von Neumann and Morgenstern stated in their expected utility theory that the utility

function exists if and only if the preferences of an individual satisfy Axioms 1-Axioms

4.

For EUT, the utility function is assumed to be concave, which means the diminishing

marginal utility obtained from an extra unit of return. The degree of risk aversion is

captured by the shape of the utility function. For decades, the EUT played a dominant

role in the decision making problems in various areas of economics.

2.3.3 Portfolio Selection Problem under EUT

EUT has been used as a reference to find the optimal solution in many areas of eco-

nomics, as a result, a decision is a choice between some subset of all possible states and

all feasible weighted portfolios. Each investment choice reduces to a prospect with a

probability distribution. The rule of decision making is to maximize E[u(·)], where u(·)

is a real valued function representing the utility obtained from certain wealth or returns.

Generally, the usual assumption in EUT is that decision makers are risk-averse, which

means that the u(·) is an increasing concave (i.e., u′(·) > 0 and u′′(·) < 0).

Suppose that investors are faced with one of two possible investments, each of them

has n consequences, denoted by S1, S2, . . . , Sn. Suppose that the first investment will

result in n consequences with pi, i = 1, 2, . . . , n whereas the second one will produce
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probability qi, i = 1, 2, . . . , n. The object of decision maker can be described as follows:

max {E1(u(Si)), E2(u(Si))} (2.33)

where E1(u(Si)) and E2(u(Si)) represent
∑n

i=1 piu(Si) and
∑n

i=1 qiu(Si) respectively.

Different investment proportions will result in different probability distribution of

portfolio returns. People invest xi dollars in the i-th risky asset and (W0 −
∑n

i=1 xi)

dollars in the risk-free asset, the final wealth in the next period can be denoted by W

as follows:

W = W0(1 + r0) +
n∑

i=1

xi(ri − r0) (2.34)

where W0 is initial wealth, r0 represents rate of risk-free asset, ri is the random rate of

return on the i-th risky asset.

The portfolio choice problem that maximizes the expected utility of one’s final wealth

in the next period can be expressed mathematically as follows:

max
xi

E[u(W )] (2.35)

The expected utility function of investor who has an utility u(R) can be defined as:

E[u(W )] =

∫ +∞

−∞
u(w)dFW (w) (2.36)

where FW is the probability distribution function of W .

According to equation (2.36), if different investment decisions have the same distri-

bution function, they will produce the same expected utility and are indifferent to each

other.

2.4 Prospect theory

Although MPT, VaR or CVaR, and EUT have been very useful in modeling portfolio

choice, substantial empirical and experimental evidence has revealed that they do not

reflect reality. To solve the problem, the original version of prospect theory was proposed

by Kahneman and Tversky (1979).

PT (prospect theory) is able to find a solution to several paradoxes in decision theory

under uncertainty like reported by Allais and Ellsberg in which people’s choices violate

the postulates of subjective expected utility.
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The PT models includes two-stages: the first stage involves editing, and the second

involves evaluation. The use of an editing phase is the most obvious distinguishing

characteristic of PT from any of the theories discussed in the previous section. The

editing phase is the most obvious feature to distinguish from any other theory mentioned

above.

There are four important differences between EUT and PT in terms of decision

making: reference dependence, different risk attitude, loss aversion, and probability

distortion. These are the factors which make PT psychologically more realistic.

First, PT investors appraise their investment according to its relative value with

respect to some reference point, which separates the investment into gains and losses.

In contrast, EUT implies that investors make choices based on changes for final value.

Second, PT investors display different behaviors with respect to gains and losses. As

such, as shown in Fig.2.5, the value function is concave with respect to gains and convex

with respect to losses. The concavity over gains reflects the finding that people tend to

be risk averse over moderate probability gains: they typically prefer a certain gain of

$1000 to a 50 percent chance of $2000. However, people also tend to be risk seeking over

losses: they prefer a 50 percent chance of losing $2000 to a guarantee of losing $1000.

EUT is typically concave everywhere, i.e. risk averse.

Third, PT investors are more sensitive to losses than to gains of the same magnitude,

i.e. loss averse. Loss aversion, as an important concept in prospect theory, implies that

the utility function is steeper for losses than it is for gains, as shown in Fig. 2.5. Loss

aversion indicates that most people are unwilling to take part in a gamble consisting of

a 50 percent chance of losing $1000 and a 50 percent chance of gaining $1100. Benartzi

and Thaler (1995) discussed an equity puzzle and concluded that, if loss aversion is taken

into account, the risk premium can be more substantial than when it is not considered.

Thaler (1980) discussed the endowment effect using loss aversion, concluding that people

value their own stuffs more than those to others. Samuelson and Zeckhauser (1988)

discussed the status quo bias whereby most real decision-makers prefer to maintain their

current or previous decisions because of loss aversion. Barberis et al. (2006) discussed the

stock market nonparticipation phenomenon in which, even though the stock market has

a high mean return and a low correlation with other household risks, many households

have historically been reluctant to allocate any money to it because of loss aversion.

There is no concept of loss aversion in EUT, therefore the explanation of the above

phenomena is beyond its scope.
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Figure 2.5: The value functions.

Finally, PT investors do not weight outcomes using objective probabilities, unlike

EUT, but rather by transformed probabilities obtained via a probability weighting func-

tion, as shown in Figure 2.6. The paradoxes of Allais and Ellsberg can be explained by

means of a nonlinear transformation of the objective probabilities.

Consider the prospect5

(t1, p; t2, q) (2.37)

to be read as gain t1 with probability p and t2 with probability q, where t1, t2 ̸= 0 and

p+ q = 1. In the original version of prospect theory, the agent assigns the prospect the

value

w(p)v(t1) + w(q)v(t2) (2.38)

where v(·) and w(·) are known as the value function and the probability weighting

function, respectively. These functions satisfy v(0) = 0, w(0) = 0, and w(1) = 1.
5It is noteworthy that PT can be applied only to gambles with at most two nonzero outcomes

(Kahneman and Tversky, 1979, Barberis, 2013).It is wrong to use PT to solve more than two nonzero
outcomes by some scholars.
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Figure 2.6: The weighting functions.

2.5 Cumulative Prospect theory

Cumulative prospect theory (CPT) is a modified version of prospect theory proposed by

Tversky and Kahneman (1992), who put forward explicit functional forms for v(·) and

w(·) and applied the probability weighting function to the cumulative probability, not

to the single probability. This ensures that CPT does not violate first-order stochastic

dominance—a weakness of the original prospect theory—and that it can be applied to

gambles with any number of outcomes, not just two.

Moreover, Tversky and Kahneman drawed a conclusion to the important“four-fold

pattern of risk attitudes”, which is risk-seeking for small-probability gains and large-

probability losses and risk-aversion for small-probability losses and large-probability

gains. This can explain why people like both lotteries and insurance, which are difficult

to rationalize under EUT.

According to Tversky and Kahneman (1992), the CPT investors evaluate the invest-

ment6

(t−m, p−m; . . . ; t−1, p−1; t0, p0; t1, p1; . . . ; tn, pn) (2.39)
6t−m, ..., tn are the results that the actual outcome minus the value of reference point.
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Figure 2.7: The value functions

where ti < tj for i < j , t0 = 0 and
∑n

i=−m pi = 1.

As mentioned above, EUT assumes that the investors are risk-averse in the gains.

However, CPT assumes that investors express the outcomes as deviations from some

reference point and response being more sensitive to losses than to gains. The value

function v(·) is defined by Tversky and Kahneman (1992) as:

v(t) =

 tα t ≥ 0

−λ(−x)β t < 0
(2.40)

where α = β = 0.88 and λ = 2.25. 7

For α, β < 1, the S-shaped power value function exhibits risk aversion over gains and

risk seeking over losses. The parameter λ captures loss aversion, assuming that investors

consider losses to be more than twice as important as gains. The value functions v+(·)

and v−(·) are often supposed to be an increasing, twice differentiable, invertible, and

concave functions (Bernard and Ghossoub, 2010).

The parameters of value function define the degree of risk aversion with respect to

gains, the degree of risk seeking with respect to losses, and the degree of loss aversion.

The parameter α represents risk aversion with respect to gains and the parameter β

represents risk preference with respect to losses. The parameter λ represents the loss

aversion: the higher the value of λ, the more loss-averse the CPT investors. As shown

in Figure 2.7, the dash-dot curve corresponds to α = β = 0.3, λ = 1; the dotted curve
7The value functions in PT and in CPT are often confused. Kahneman and Tversky (1979) only

described the form of value function whereas the power value functions and their parameters were
proposed by Tversky and Kahneman (1992).
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corresponds to α = β = 0.6, λ = 2; the solid curve corresponds to α = β = 0.88,

λ = 2.25; the dashed line corresponds to α = 1, β = 1, λ = 2.25.

CPT investors do not weight the outcomes according to objective probabilities.

Moreover, the weighting functions have different parameters over the domains of gains

and losses, denoted by w+(·) and w−(·), respectively. Tversky and Kahneman (1992)

proposed the following functions:

w+(P ) =
P γ

[P γ + (1− P )γ ]1/γ
(2.41)

w−(P ) =
P δ

[P δ + (1− P )δ]1/δ
(2.42)

Tversky and Kahneman (1992) estimated that γ = 0.61, δ = 0.69 8.

The parameters of weighting functions define the degree of distortion to the objec-

tive probabilities. The smaller the values of γ, δ, the greater the degree of distortion.

As shown in Figure 2.8, the dotted curve corresponds to γ = 0.61; the solid curve

corresponds to γ = 0.69; the solid line corresponds to γ = 1.

Some scholars considered that w+ : [0, 1] → [0, 1] and w− : [0, 1] → [0, 1] are non-

decreasing and differentiable with w+(0) = w−(0) = 0 and w+(1) = w−(1) = 1 (Bernard

and Ghossoub, 2010). Ingersoll (2008) showed that 0.28 < γ, δ < 1 ensures that w+(·)

and w−(·) are all increasing functions. For the case of γ = δ = 1, the weighting functions

have the following linear form:

w+(P ) = w−(P ) = P (2.43)

The decision weights were defined by Tversky and Kahneman (1992) under equation

(2.39) as follows:

πi =

 π+
i = w+(pi + · · ·+ pn)− w+(pi+1 + · · ·+ pn) 0 ≤ i ≤ n

π−
i = w−(p−m + · · ·+ pi)− w−(p−m + · · ·+ pi−1) −m ≤ i < 0

(2.44)

where π+
i (·) and π−

i (·) are the weighting functions for gains and losses, respectively.
8It is incorrect that some papers about the application of PT used equation (2.41) and equation

(2.42). No equations and parameters about weighting functions were given by Kahneman and Tversky
(1979).
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Figure 2.8: The probability weighting functions

The CPT value of the investment for stocks is given by

V =

n∑
i=−m

πi · v(ti) (2.45)

CPT investors make portfolio choices by maximizing their CPT value; that is, CPT

investors determine their investments by maximizing the value of equation (2.45).

Tversky and Kahneman (1992) provided an illustration of CPT model but the result

was not given. According to equation (2.40), (2.41), (2.42), (2.44) and (2.45), this

dissertation gives the result and provides a brief analysis. Assume that there is a zero

level of CPT, i.e. CPT value is 0, which is a critical value of taking part in or not taking

part in gamble. With the parameters of α = β = 0.88,γ = 0.61,δ = 0.69 and λ = 2.55,

the CPT value is -1.85. Furthermore, the CPT value is 0.27 when the parameters are

α = β = 0.88,γ = 0.61,δ = 0.69 and λ = 1. People who have the parameters are

proposed by Tversky and Kahneman (1992) will not play the game, whereas，other

things being equal, people who do not have the loss aversion, i.e. λ = 1, will participate

in the game.

2.6 Summary

In general, the portfolio problem is how many assets in the portfolio will be necessary,

and the optimal level of diversification should provide convenience for the portfolio

management.
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The application of the MPT makes it possible to solve portfolio problem under

return-risk space, i.e., investors face a trade-off between risk and expected return. The

efficient frontier represents portfolios which maximize expected return for a given level

of risk. No rational investor would therefore choose a portfolio below the curve because

a portfolio with higher return and the same risk exists. As capital allocation line (CAL)

gives combinations of the risk-free asset and the market portfolio, rational investors

should choose a portfolio on this line in order to achieve the highest return with the

lowest risk. Widely used measures of risk are value at risk (VaR) and conditional value

at risk (CVaR). The former measures the loss value to be exceeded with a specified

probability. The latter was used to quantify the average of the losses that occur beyond

the VaR cutoff point at a given confidence level in the distribution.

p

x

w(p)

u(x)

EVEUT

PT/CPT

p

w(p)

x

u(x)

Figure 2.9: EV, EUT and PT/CPT

EUT describes the subjective sensitivity to the results, but treats probability of

these results objectively. Lopes (1987) has said that risk attitude is more than the psy-

chophysics of money. Psychologists and economists have different attitudes when they

face a same prospect. Psychologists Economists seem to consider that risk is a function

of money or return. Psychologists have showed that risk is a feel about probability in-
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stead of money or return. It is worth mentioning that the depth of the rank-dependent

idea, a transform of cumulative probability instead of individual probability,has taken

analysis about risk to the next level.

Finally, this dissertation suggests that EV, EUT, PT and CPT drops in a continuous

line to some extent, i.e., the pattern of inner product. There exist two mappings for

outcomes and their probabilities, i.e., u(·) and w(·) 9. As shown in Figure 2.9, the value

of EV is the area sum of dark shadow and light shadow at First Quadrant 10. The

Weighted Monetary Value, the products of outcomes and transformed probabilities, is

merely the area sum of dark shadow and light shadow at Fourth Quadrant 11. The

EUT, which is the products of transformed outcomes and probabilities, is the area sum

of dark shadow and light shadow at Second Quadrant. PT/CPT, which is the products

of transformed outcomes and transformed probabilities, is the area sum of dark shadow

and light shadow at Third Quadrant12.

9Although utility function in EUT differs from value function in PT/CPT, without loss of generality,
they can be assumed to be same thing here.

10In fact, either dark shadow or light shadow in each quadrant is rectangle. Part of light shadow is
hidden by dark shadow.

11Schoemaker (1982) has given various forms of models under the pattern of inner product in detail.
12When there are only two non-zero outcomes in prospect, the PT is consistent with CPT. And the

value of reference point is assumed to be zero in Figure 2.9.
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Chapter 3

Portfolio choice under

multivariate normal distribution

In this chapter, we consider the problem of identifying the optimal portfolio consisting

of one riskless asset and multiple risky assets under CPT. The CPT function is generally

non-convex, non-concave and non-smooth, which means that traditional optimization

methods such as Lagrange multipliers and convex duality do not work and the CPT

function may have many local maxima (He and Zhou, 2011).

The problem mentioned above can be solved by some stochastic search algorithms,

such as genetic algorithm, simulated annealing algorithm, tabu search algorithm and

particle swarm algorithm. Stochastic search algorithms offer a number of advantages

over more traditional optimization methods. Genetic algorithm and simulated annealing

are powerful approaches and well accepted among these methods (Spall, 2005).

Genetic algorithm developed by Holland (1975), is an effective solution to solve

problems of optimization. Simulated annealing algorithm, was proposed by Kirkpatrick

et al. (1983), is also an effective method for optimization problem. Genetic algorithm

has ability of global searching; whereas it is poor in local searching. This algorithm has

a problem of premature convergence to be trapped in local optima. Simulated annealing

algorithm can find the local optimum solutions quickly and avoid being entrapped into

local optimum solutions. However, it is incapable in global searching, leading to infinite

time for finding a global optimum. Considering these reasons, we use genetic algorithm

to find optimum solution in this dissertation.

Genetic algorithms (GAs) are of robust search and optimization techniques. Unlike

gradient-based methods, GAs do not use any properties of the function being optimized.

The only requirement of the problem is that objective functions can be computed. More-
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over, GAs are superior to gradient-based methods as the search is not biased towards the

locally optimal solution. In addition, GAs differ from random sampling algorithms in

their ability to direct the search towards relatively“prospective”regions in the search

space.

GAs have been successfully used in a variety of research fields. In recent years,

numerous studies have showed that GAs can efficiently solve optimal portfolio problems

in finance. For instance, Chang et al. (2000) and Yang (2006) used GAs to solve the

problem of mean-variance portfolio optimization, and Tsao (2010), Baixauli-Soler et al.

(2011), and Ranković et al. (2014) solved optimality problems related to the mean-VAR

using GAs. However, to the best of our knowledge, no studies have yet used CPT with

GAs to solve the portfolio choice problem save for Grishina et al. (2017).

The main contributions of this chapter are to describe a model that identifies an

investment portfolio with several risky assets and one riskless asset under CPT, and to

adapt a genetic algorithm to solve the portfolio selection model. We employ a real-coded

genetic algorithm (RCGA), which is more consistent, precise, and converges faster than

ordinary GAs. The RCGA is therefore better suited to large-dimensional search spaces

than a binary-coded genetic algorithm (BCGA) (Baskar et al., 2001, 2003, 2004). How-

ever, recent studies have shown that several drawbacks of RCGAs reduce their search

capabilities. To enhance the efficiency of our RCGA research, we incorporate some

adaptive properties. This dissertation suggests that the resulting adaptive RCGA (AR-

CGA) is a highly efficient and effective algorithm for obtaining near-optimal solutions

within a few minutes.

3.1 Objective functions of CPT investors

In CPT, the probability distribution is assumed to be discrete by Tversky and Kahneman

(1992), although we can extend the scope of CPT to more general distributions by

adopting the relevant methods (Barberis and Huang, 2008, Jin and Yu Zhou, 2008,

Bernard and Ghossoub, 2010).

Assumption 1: CPT investors are more concerned with return than the final

wealth.

Let Rp be the rate of return of a portfolio at the end of the period and rf be the

reference point, which separates gains and losses. Define the deviation D from the

reference level by
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D = Rp − rf (3.1)

The cumulative distribution function of the random variable D is denoted by FD,

and |E(D)| < ∞ and V ar(D) < ∞.

As mentioned earlier, CPT treats outcomes as gains and losses from a reference level

separately. The value function v is defined as follows:

v(t) =

 v+(t) t ≥ 0

−v−(−t) t < 0
(3.2)

where v+ : R+ → R+ and v− : R− → R− are invertible, twice differentiable, increasing

functions with v(0) = v+(0) = v−(0) = 0, v+(+∞) = +∞ and v−(−∞) = −∞.1 t are

the possible values of D.

The value function (3.2) exhibits a S-shaped curve that captures the features de-

scribed above: it is concave for gains and convex for losses, being more sensitive to losses

than to gains, which is so called “loss aversion” in CPT. There are several types of value

functions, such as the power value function, exponential value function, quadratic value

function, and linear value function. We consider the following two types:

(1) The piecewise power value function

This is the original function considered by Tversky and Kahneman (1992) as the

general form of the value function in CPT.

v(t) =

 tα t ≥ 0

−λ(−t)β t < 0
(3.3)

where 0 < α, β ≤ 1 and λ ≥ 1. We call this the general value function.

The parameter α represents risk aversion with respect to gains and the parameter β

represents risk preference with respect to losses. Higher values of α and β signify that

CPT investors are becoming increasingly rational being. The parameter λ represents

the loss aversion: the higher the value of λ, the more loss-averse the investor.

(2) The linear piecewise value function

v(t) =

 t t ≥ 0

λt t < 0
(3.4)

1R+ denotes R+ ∪
{+∞} and R− denotes R− ∪

{−∞}.

30



This is a special case of (3) in which α = β = 1. We call this the linear value

function.

CPT investors do not weight outcomes by using objective probabilities. Besides,

there exist different parameters in the weighing functions with the domains of gains and

losses. The weighting functions are denoted by w+(·) for gains and w−(·) for losses.

Tversky and Kahneman (1992) proposed the following functions:

w+(FD(t)) =
F γ
D(t)

[F γ
D(t) + (1− FD(t))γ ]1/γ

(3.5)

w−(FD(t)) =
F δ
D(t)

[F δ
D(t) + (1− FD(t))δ]1/δ

(3.6)

where FD(t) is the cumulative distribution function of D, and w+ : [0, 1] → [0, 1],
w− : [0, 1] → [0, 1] are non-decreasing and differentiable with w+(0) = w−(0) = 0 and

w+(1) = w−(1) = 1. We call these the general weighting functions.

The parameters of the weighting functions determine the degree of distortion to

the objective probabilities. The smaller the values of γ, δ, the greater the degree of

distortion.

A number of scholars have focused on the comparative performance of different

functional forms of CPT, examining a variety of different parameters relative to Tversky

and Kahneman (1992). Camerer and Ho (1994) fitted the CPT function using three

different value functions together with the general weighting function, whereas Wu and

Gonzalez (1996) repeated their estimation procedures to determine the CPT parameters.

Blondel (2002), Birnbaum and Chavez (1997) examined various functions and tested

several parametric formulae under CPT. Fennema and Van Assen (1998) re-examined

the utility for losses and derived parameters for the CPT value function. In addition,

various experiments have examined different forms and parameters of functions under

CPT Gonzalez and Wu (1999), Bleichrodt and Pinto (2000), Luce (2001). Table 3.1

presents a variety of CPT parameters.

It is interesting to discuss the value function as a piecewise linear function under

CPT. Luce (1991) explored a weighted linear utility representation for binary gambles

in which the weights depend on both the rank order and the sign of the consequences.

Benartzi and Thaler (1995) gave a novel explanation for the equity premium puzzle using

CPT with a linear value function. Barberis et al. (2001) systematically studied the asset

prices given by adopting a linear value function based on CPT, and explained the high

mean, excess volatility, and predictability of stock returns. Gruene and Semmler (2005)
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Table 3.1: CPT parameters
Function Parameter Value Study

Value Function α = 0.36, β = 0.24 Fennema and Van Assen (1999)

α = β = 0.50 Wu and Gonzalez (1996)

α = β = 0.88 Tversky and Kahneman (1992)

Weighting Function γ = δ = 0.56 Camerer and Ho (1994)

γ = 0.61, δ = 0.69 Tversky and Kahneman (1992)

studied asset pricing by employing a stochastic growth model with linear function, and

De Giorgi et al. (2007) developed an algorithm to compute asset allocations under CPT

with a linear value function, thus extending the explanation of the equity premium

puzzle by incorporating changing risk aversion. Schmidt and Zank (2008) and He and

Zhou (2011) have also studied the linear value function under CPT.

The objective function of CPT investors is defined by2

V (D) =−
∫ +∞

0
v+(t)dw+(1− FD(t))

+

∫ 0

−∞
v−(t)dw−(FD(t)) (3.7)

or, equivalently,

V (D) =

∫ +∞

0
v+(t)w+′

(1− FD(t))fD(t)dt

+

∫ 0

−∞
v−(t)w−′

(FD(t))fD(t)dt (3.8)

where fD(t) is the probability density function of D and

w+′
(1− FD(t))

=
γ(1− FD(t))

γ−1((1− FD(t))
γ + (FD(t))

γ)

[F γ
D(t) + (1− FD(t))γ ]1/γ

− (1− FD(t))
γ((1− FD(t))

γ−1 − (FD(t))
γ−1)

[F γ
D(t) + (1− FD(t))γ ]1/γ

(3.9)

2We use the definition of He and Zhou (2011).
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w−′
(FD(t))

=
δ(FD(t))

δ−1((1− FD(t))
δ + (FD(t))

δ)

[F δ
D(t) + (1− FD(t))δ]1/δ

− FD(t)
δ((FD(t))

δ−1 − (1− FD(t))
δ−1)

[F δ
D(t) + (1− FD(t))δ]1/δ

(3.10)

To ensure that (8) is finite, we require α < 2min(γ, δ) and β < 2min(γ, δ). However,

Barberis and Huang (2008) showed that these conditions are not necessary for log-normal

and normal distributions.

For the convenience of computing, we give another form of the objective function.

Proposition 1: If the value function is the piecewise power function, the objective

function of CPT can also be written as:

V (D) =

∫ +∞

0
w+(1− FD(t))dv

+(t)

−
∫ 0

−∞
w−(FD(t))dv

−(t) (3.11)

Refer to Appendix A for the proof.

Assumption 2: There are no transaction costs in the financial market, and CPT

investors do not borrow cash for investment.

Assumption 3: The financial market consists of n risky assets, whose rates of

returns R = (R1,R2, . . . ,Rn)
T follow the multivariate normal distribution, and one

riskless asset with a return of r0. Furthermore, the vector of means E(R) = µ =

(µ1, µ2, . . . , µn)
T and the n×n covariance matrix Cov(R) = Σ = {σi,j} exists, where Σ

is a positive-definite matrix.

Let x = (x1, . . . , xn) be a vector of the investment ratio on risky assets, xn+1 =

(1 −
n∑

i=1
xi) be the proportion of the riskless asset and 1 be the unit column vector.

Then, the deviation D(x) is

D(x) = x1R1 + · · ·+ xnRn + xn+1r0 − rf

= xR− r0x1− rf + r0 (3.12)

In this dissertation, we only consider the case where rf = r0. That is, CPT investors
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take the return on the riskless asset as the reference point.

Proposition 2: If R ∼ Nn(µ,Σ) holds, then the deviation D(x) ∼ N(µD,Σ
2
D),

where

µD = xµ− r0x1

σ2
D = xΣx (3.13)

See Appendix for the proof.

CPT investors make portfolio choices by maximizing their CPT value; that is, CPT

investors determine their investments by maximizing the value of equation (3.11)3.

max V (D(x))

s.t.
n∑

i=1

xi ≤ 1,

xi ≥ 0, i = 1, 2, 3 . . . , n (3.14)

3.2 Adaptive real-coded genetic algorithm technique

The concept of genetic algorithm, which can be described as“intelligent”probabilistic

search algorithms, was developed by Holland and his colleagues in the 1960s and 1970s.

The idea was inspired by the evolutionary theory explaining the origin of species. Being

a population-based approach, GAs are well suited to the CPT optimization. The ability

of genetic algorithm to simultaneously search different regions of a solution space makes

it possible to find a diverse set of solutions for difficulties with non-convex, discontinuous,

and multi-modal solution spaces. Each of GAs initially has a population consisting of a

set of vector chromosomes, which are generated randomly to explore the solution space

of a problem.

Traditionally, the genes in the chromosome are represented by binary coded strings.

RCGAs, however, use real-valued genes to solve continuous optimization problems (Her-

rera et al., 1998, Michalewicz, 1994). The use of real-valued genes allows for better

adaptation to the numerical optimization of continuous problems. RCGAs have the

capacity to exploit the gradation of functions with continuous variables, and to avoid
3The objective function (3.11), which involves numerical integration, is solved using Matlab’s “inte-

gral” and “normcdf”functions.
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the Hamming cliff effect suffered by BCGAs. The convergence speed of RCGAs is good,

because, unlike BCGAs, where are no coding and decoding processes. In RCGAs, each

chromosome represents one decision vector and every gene corresponds to the weight of

one asset.

We developed an efficient RCGA with an adaptive mechanism that makes the oper-

ators more efficient throughout the evolutionary process. This adaptive method solves

the problem of portfolio choice under CPT within the feasible operating region. There

are two important issues in RCGA. One is the selection pressure, without which the

search process would be a random algorithm. The effective selection pressure ensures

that chromosomes with higher fitness values have a higher chance of surviving under

crossover and mutation. The second is population diversity, which produces genotypes

of the offspring that differ from those of their parents. A highly diverse population can

increase the probability of exploring the global optimum and prevent premature conver-

gence to a local optimum (Deb and Goyal, 1996, Deb and Beyer, 1999). RCGA involves

a trade-off between selection pressure and population diversity, because the two factors

act against one another. They should therefore be controlled to ensure the optimal

balance. Hence, in this dissertation, we propose a new technique to increase the selec-

tion pressure and an adaptive method which retains the balance between the selection

pressure and population diversity processes. The pseudocode of ARCGA is shown in

Figure 3.1, where P (g) represents the parents, M(g) represents the mating pool, Q′(g)

represents the offspring from M(g) after the crossover operation, Q(g) represents the

offspring from Q′(g) after the mutation operation, and g denotes the generation. A

flowchart of ARCGA is given in Figure 3.2.

3.2.1 Adaptive real-coded genetic algorithm implementation

Generation of initial population

The genes of a chromosome are real numbers between 0 and 1 representing the weights

invested in the assets under CPT. The most popularly used initialization method is

random generation. Every datum is generated uniformly in the range [0, 1] in a ran-

dom, independent manner. For convenience, we add a variable xn+1 to ARCGA and
n+1∑
i=1

xi = 1. The wi, i = 1, . . . , n+ 1, represent a vector of data generated randomly in

the initialization phase.

If the sum of these data is greater than 1, the constraint in (15) will be violated. To
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Begin
g = 1
Initialize population P (g).
while (not termination condition) do
Evaluate the fitness value of each chromosome.
Sort the chromosomes in descending order of fitness value.
Calculate the adaptive parameters based on fitness value.
Create a mating pool M(g) from the population P (g) using the selection operator.
Create offspring-crossed Q′(g) from M(g) using the crossover operator.
Create offspring Q(g) from Q′(g) using the mutation operator.
Select the best chromosome from P (g) according to fitness value and replace one
chromosome at random in Q(g).
P (g + 1) = normalized Q(g).
g = g + 1
end
End

Figure 3.1: Pseudocode of the ARCGA

overcome this problem, the portfolio weights are obtained by normalizing wi as follows:

xi = wi/

n+1∑
i=1

wi (3.15)

where xi represents the weight invested in asset i after normalization, and xn+1 repre-

sents the proportion for the riskless asset.

By repeating the above procedure m times, we obtain m solutions that form the first

population Xg=1 = {X1, . . . , Xm}. Xg will evolve and gradually converge to X∗ as the

evolutionary process continues.

Constraints

One of the most difficult things in ARCGA is how to handle constraints. Dealing

with infeasible chromosomes is far from trivial, because the genetic operators used to

manipulate the chromosomes often yield infeasible solutions. Various methods have

been proposed to deal with constraints, with the penalty method the most common

approach for constrained optimization problems. The principal issue of the penalty

strategy is how to design a penalty function so as to effectively guide the genetic search

toward a promising area of the solution space. There are no general guidelines for

designing a penalty function, and constructing an efficient penalty function is largely

dependent on the specific problem. Actually, one reason for using the penalty method

is to retain some information about some infeasible solutions, which are perhaps closer
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Begin

Set number of generation and population size

Stopping Criterion 

Satisfied Stop

Yes

Selection: Keep the best chromosomes and use it to replace the worst ones

Crossover: Apply arithmetical crossover for each pair of chromosomes

Mutation: Apply non-uniform mutation for each offspring

Go to next generation

No

Randomly generate  solutions

Normalize solutions to meet the constraint

Compute the fitness value and sort them in descending order

Elitist method: Keep the best chromosomes  during the whole process of ARCGA

Compute the adaptive parameters by diversity of population

Figure 3.2: Flowchart of ARCGA

37



Figure 3.3: Feasible and infeasible solutions

to the global optimal solution. However, because of the complexity of CPT, it is very

difficult to construct an effective penalty function.

To overcome this problem, we propose a system in which the normalization process

is run after each iteration in the ARCGA process. As shown in Figure 3.3, in two

dimensions, there exist two parts of the solution space: feasible and infeasible solutions.

Infeasible solution b is much nearer to optimal solution a than infeasible solution d and

feasible solution c. There are reasons to think that b contains much more information

about the optimal solution than c, although it is infeasible. Solution b′, with more

information, is drawn into the feasible region by normalization.

Evaluation

The fitness value of each chromosome is measured by an objective function. We evaluate

the fitness values of the chromosomes in P (g) with (15), and order fg
j , j = 1, . . . ,m,

which are the fitness values in every generation.

Selection

There are different methods of applying the selection operator in RCGA. Truncation se-

lection is known to be the most efficient form of directional selection (Crow and Kimura,

1979). This approach ranks all chromosomes according to their fitness values and se-

lects the best T% as parents. Truncation selection has been used extensively in evolution

strategies (Thierens and Goldberg, 1994a, Back, 1994). Other popular methods include
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(µ + λ) selection and (µ, λ) selection, where µ is the number of parents and λ is the

number of offspring. The top µ individuals form the next generation, with the selection

being from parents and children in the (µ + λ) case and from children only for (µ, λ).

Typically, λ is one or two times µ (Hoffmeister and Bäck, 1991). Top-N selection is

employed to select the N best chromosomes from the population (Hancock, 1994). In

addition, the “replace worst” strategy replaces the population if the new chromosome

is better than the existing worst chromosome. Goldberg and Deb (1991) showed that

higher selection pressure exists in populations that delete the worst chromosome, even

if others are selected at random.

Inspired by these ideas, we introduce a selection operator called duplicated top-N

selection (DTNS), in which the best n chromosomes are copied twice to the mating

pool. This approach ensures that the best n chromosomes are retained and the worst

n chromosomes are replaced. The remaining chromosomes are placed in the mating

pool unchanged. In this manner, the best chromosomes in the population have more

opportunity to be chosen and the worst chromosomes will be eliminated from the pop-

ulation. This leads to better convergence in terms of the quality of chromosomes and

computation time. In our work, N is determined by rounding the size of the population

and multiplying by T%.

To compare the validity of this technique with traditional methods, we use roulette

wheel selection, which was proposed by Holland (1975) and is commonly used in GAs

(Goldberg, 1989). Roulette wheel selection chooses chromosomes with respect to their

fitness values (fitness-proportionate selection). Traditionally, fitness values are assigned

to each chromosome based on their objective function values. In this work, we use the

fitness value ranking, instead of the actual values, known as rank-based selection. This

notion was first used in GAs by Baker (1985). There is some evidence that selection

according to rank is superior to fitness-proportionate selection (Whitley et al., 1989).

The use of rank-based roulette wheel selection (RRWS) provides a degree of control

over the selective pressure that is not possible with fitness-proportionate roulette wheel

selection. In addition, fitness-proportionate roulette wheel selection can sometimes lead

to problems when the search is likely to stagnate due to a lack of selective pressure or

premature convergence because selection has narrowed the search too quickly. Moreover,

in some ways, ranking is more consistent with the schema theorem, because there is no

need to introduce additional parameters that are not explained by the schema theorem

in order to control the selective pressure. To some extent, the method of rank-based
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selection can prevent premature convergence, which is a weakness of RCGA.

As we are seeking to maximize the objective function, each chromosome will be

sorted in descending order of objective function value, and the rank-based number used

as the fitness value. Linear and exponential ranking methods are commonly used. We

use the linear ranking and selection probabilities given by

pi = (η+ − (η+ − η−) · (i− 1)/(m− 1))/m (3.16)

where
m∑
i=1

pi = 1 and 1 ≤ η+ ≤ 2, η− = 2− η+.
The constants η+ and η− are called the maximum and minimum expected values,

respectively, and determine the slope of the linear function. Normally, a value of η+ =

1.1 is recommended Back (1994).

Crossover

We use the typical arithmetical crossover of each parent to produce two offspring in the

crossover step. It was suggested by Michalewicz (1994) that the arithmetical crossover

operator is the best option for RCGA. Assume that chromosomes x = (x1, . . . , xn+1) and

x′ = (x′1, . . . , x
′
n+1) have been selected for crossover. The offspring are given as follows:

x̂i = ξxi + (1− ξ)x′i;

x̂′i = ξx′i + (1− ξ)xi. (3.17)

where ξ is an uniform random number in [−0.5, 1.5].

Mutation

Mutation is generally applied at the gene level and reintroduces genetic diversity to

the population, which helps the search to escape from local optima. We apply a non-

uniform mutation operator. Suppose that x = (x1, . . . , xi, . . . , xn+1) is a chromosome,

and that xi ∈ [ai, bi], where ai and bi are the lower and upper bounds of xi, respec-

tively, is the element to be mutated in generation g. The resulting chromosome will be

x
′
= (x1, . . . , x

′
i, . . . , xn+1), where x′i is obtained by

x′i =

 xi +△(g, bi − xi) if γ = 0

xi −△(g, xi − ai) if γ = 1
(3.18)
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with γ being a random number that takes a value of zero or one, and

△(g, l) = l(1− r(1−
g
G
)τ ) (3.19)

where r is a random number from the interval [0, 1], G is the maximal generation num-

ber, and τ is a user-selected parameter that determines the degree of non-uniformity

(Michalewicz, 1994). This function gives a value in the range [0, l] such that the prob-

ability of returning a number close to zero increases as g increases. As a result, this

operator performs a uniform search in the initial stages (when g is small) and a more

local search in the final stages (Kaelo and Ali, 2007, Deep and Thakur, 2007).

Elitist method

The main disadvantage of roulette wheel selection is that the best chromosome in each

generation may not be preserved. The elitist method can isolate the best chromosome

and transfer it to the next generation (Thierens and Goldberg, 1994b). In this way, the

best chromosome obtained during the whole process of RCGA is guaranteed to survive.

Rudolph (1994) showed that convergence to the global optimum is not an inherent

property of the canonical genetic algorithm (CGA), but rather is a consequence of the

algorithmic trick of keeping track of the best solution found over time. The major

drawback of this approach is the tendency to get stuck around some local extrema

(Ranković et al., 2014). Obviously, the combination of elitist and adaptive methods can

avoid the aforementioned shortcomings.

Stop criterion

The algorithm terminates when the following stopping criterion is satisfied:

g = G (3.20)

where g is the current number of generations and G denotes the maximum number of

generations, which is a pre-fixed threshold.

3.2.2 Parameter selection

Although RCGA has many advantages over BCGA, it can often suffer from premature

convergence due to a lack of population diversity. Conversely, it can also suffer from

slow convergence (Kaelo and Ali, 2007). To overcome these problems, RCGA has been
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hybridized with other optimization methods (Chelouah and Siarry, 2003, Yun et al.,

2003). For instance, some researchers have worked on improving the crossover opera-

tors of RCGA (Tsutsui and Goldberg, 2001, Hrstka and Kučerová, 2004). Population

diversity in RCGA is important throughout the search process, not just in the initial

stages, as this determines how the set evolves with each generation to explore the search

region. Although a number of rules have been suggested in the literature to improve

the population diversity, they are generally tailored towards solving certain problems

(Tsutsui and Goldberg, 2001). Subbaraj et al. (2009) and Subbaraj et al. (2011) devel-

oped a self-adaptive real-coded genetic algorithm to solve the combined heat and power

economic dispatch problem. However, pc and pm were assigned constant values in their

paper.

In essence, RCGA uses the values of pc and pm to balance the capacity to converge to

an optimum (local or global) after locating the region containing the optimum and the

capacity to explore new regions of the solution space in search of the global optimum

(Srinivas and Patnaik, 1994). The probabilities of crossover and mutation are varied

depending on the fitness values of the solutions. This encourages the exploration of the

search space because of the accelerating gene disruption, and helps to prevent premature

convergence. Hence, in our study, we use the adaptive probabilities of crossover and

mutation to maintain diversity in the population and sustain the convergence capacity

of the RCGA. In general, GAs commonly use values of pc in the range [0.5, 1] and pm

in the range [0.001, 0.05].

Srinivas and Patnaik (1994) used fg
max− f to detect the convergence of the GA, and

varied pc and pm depending on the value of this metric. Scholars are increasingly using

adaptive crossover and mutation probabilities instead of fixed values (Lin et al., 2003,

Blum et al., 2001, Zhang et al., 2007, Huimei, 2000). Following Srinivas and Patnaik

(1994) and Lin et al. (2003), we use the following expressions:

pgc = k1(f
g
max − f

g
)/(fg

max − f
g
)

pgm = k2(f
g
max − f

g
)/(fg

max − f
g
) (3.21)

We set k1 = 1.0 and k2 = 0.5. fg
max and f

g represent the maximum and average

fitness values of the population at each generation, respectively. f
g
is the average of

those fitness values that are greater than f
g. We restricted pc and pm to the ranges

recommended above. The adverse effect caused by poor chromosomes can be avoided

by calculating the difference in fitness values, and this is clarified in the degree of con-
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Table 3.2: Parameters of objective function
Parameter α β λ γ δ

Value 0.88 0.88 2.55 0.61 0.69

vergence between the chromosomes with larger fitness values in the population.

3.3 Numerical experiments

3.3.1 Parameters related to investors and futures markets

We test the proposed algorithm for solving portfolio selection model (5.21). To perform

computational experiments, we first determine the parameters in model (5.21). Five

parameters (α, β, λ, γ, δ) are used to describe the investors’ objective function. We

adopt the values from Tversky and Kahneman (1992). Table 3.2 lists the parameters

used in our experiments.

In this study, we consider that the multivariate normal distribution of risky assets

has mean vector and covariance matrix as follows:4

µ =
(

0.040 −0.015 0.039 0.027
)

(3.22)

Σ = 10−5 ∗


11.45 4.69 2.29 7.01

4.69 16.90 3.16 6.02

2.29 3.16 12.77 2.96

7.01 6.02 2.96 24.34

 (3.23)

The return on the riskless asset is set to 0.02.

3.3.2 Computational experiments

All algorithms are programmed in MATLAB R2014b and run on a 2.6 GHz Apple

MacBook Pro Computer with 8 GB RAM.

We first compare the method of DTNS with RRWS. The number of iterations and

population size are set as 150 and 100 tentatively. Figures 3.4 and 3.5 show the statis-

tic for the number of iteration size from 0 to 150. The dash-dot curve in Figure 3.4

represents the maximum of 100 fitness values per iteration .The dotted curve in Figure

3.4 represents the average of 100 fitness values per iteration. The dash-dot curve in
4The data are derived by Hu and Kercheval (2010) and the four stocks are Disney, Pfizer, Altria,

Intel.
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Figure 3.5 represents the maximum of 100 fitness values per iteration. The dotted curve

in Figure 3.5 represents the average of 100 fitness values per iteration. The horizontal

axis is the number of iterations and the vertical axis is the fitness value. As shown in

3.4 and 3.5, other things being equal, for the time taken to find the optimal solution

or the trend of convergence, the DTNS method we proposed is significantly superior to

RRWS. And, 150 iterations should suffice with our next experiments.

The population size is very important in ARCGA, which significantly influences the

convergence of the algorithm. We set the number of iterations to 150 and test population

sizes of 30, 50 respectively. Figures 3.6 and 3.7 show the statistic for the number of

iteration size from 0 to 150. The dash-dot curve in Figure 3.6 represents the maximum

of 50 fitness values per iteration, while the dotted curve in Figure 3.6 represents the

average of 50 fitness values per iteration. However, the dash-dot curve in Figure 3.7

represents the maximum of 30 fitness values per iteration. But the dotted curve in

Figure 3.7 represents the average of 30 fitness values per iteration. The horizontal axis

is the number of iterations and the vertical axis is the fitness value. However, as shown

in the Figures 3.5,3.6 and 3.7, we observe no significant differences in finding the optimal

solutions and the trend of convergence.

We then compare the computer time under population size 30,50 and 100. For each

given population size, the ARCGA is run 100 times. We find that the results obtained by

the 100 runs are the same for different population sizes. In addition, we use an exhaustive

method to find the global solutions to three decimal places. A comparison shows that

the results given by ARCGA and the exhaustive method are exactly the same. The

computational results show that the proposed ARCGA is a rapid, effective, and stable

algorithm for the given objective function. The results are summarized in Table 3.3. As

shown in Table 3.3, the computer time of population size at 30 is significantly less than

others. For the experiments in the next section, we set the population size at 30.

Table 3.3: Computational results
PS CV FR x∗1 x∗2 x∗3 x∗4 x∗5 Timea

30 0.0271 0.0396 0.6261 0 0.3739 0 0 24

50 0.0271 0.0396 0.6261 0 0.3739 0 0 40

100 0.0271 0.0396 0.6261 0 0.3739 0 0 76
Note: PS stands for Population size; CV stands for CPT Value; FR stands for Final Return; x∗

1, x∗
2,

x∗
3, x∗

4 and x∗
5 stand for optimal investment ratios for stock Disney, Pfizer, Altria, Intel and riskless

asset respectively.
aAverage time in seconds.
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Figure 3.4: Fitness values produced by RRWS with population size 100.
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Figure 3.5: Fitness values produced by DTNS with population size 100.
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Figure 3.6: Fitness values produced by DTNS with population size 50.
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Figure 3.7: Fitness values produced by DTNS with population size 30.
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3.4 Influence of parameters on objective function

We now examine how the objective function is influenced by different parameter values.

Although CPT has gained importance in recent years, there has been little research on

the portfolio choice problem because of the complexity of the CPT function, and the

influence of the different parameters it is largely unknown. Pirvu and Schulze (2012)

studied how an investor allocated portfolio in a continuous model under CPT. However,

they only studied the influence of parameters α and γ on CPT. Coelho et al. (2014)

studied the parameters of CPT in a discrete optimization model of portfolio selection.

Asset allocation, however, has not been studied in his paper. The proposed ARCGA

allows us to analyze the portfolios given by different parameters. As mentioned before,

each set of parameters listed in Table 1 represents the preference of different CPT

investors. We considered three values of the loss aversion parameter λ: 1.55 to represent

a low degree of loss aversion; 2.55 to represent a normal loss aversion, as discussed by

Tversky and Kahneman (1992); and 3.55 to represent a high degree of loss aversion.

Tables 3.4–3.7 report the CPT values, final returns, and optimal portfolio for every

asset, as well as the average runtimes.5 The algorithm converged to the same result for

each set of parameters with population sizes of 30, 50, and 100, which again proves that

ARCGA is a stable algorithm. The results indicate that, regardless of the parameter

values, most CPT investors invest all their money in the risky Disney and Altria stocks.

One explanation for this is that the close to riskless returns are unattractive for these

investors, to say nothing of the risky asset with negative yield. It is clear that the CPT

values decrease with an increase in loss aversion, other conditions being equal, which is

consistent with our intuition. Furthermore, we can see that the difference in the final

return is not obvious under different parameters.

It can be observed from Table 3.4 that, along with the increasing values of α, β, the

CPT values have declined rapidly. However, the CPT values increase slightly with γ

and δ. CPT investors will increase the proportion of Disney stock under the conditions

mentioned above. In addition, our results suggest that α and β are more sensitive than

γ and δ to the CPT values.

Tables 3.5–3.7 indicate that there is at least one linear case among the value and

weighting functions. From these tables, it can be observed that the loss aversion λ has

little effect on the CPT values. As shown in Table 3.7, CPT investors will invest all
5All results in these tables are global optimal solutions given by the exhaustive method to three

decimal places.
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Table 3.4: Results for solution of CPT with general value function and general weighting
function

λ γ δ CV FR x∗1 x∗2 x∗3 x∗4 x∗5 Timea

α=0.36 1.55 0.56 0.56 0.1712 0.0396 0.5599 0 0.4401 0 0 117

β=0.24 2.55 0.56 0.56 0.1532 0.0396 0.5573 0 0.4427 0 0 122

3.55 0.56 0.56 0.1352 0.0396 0.5562 0 0.4438 0 0 126

1.55 0.61 0.69 0.1926 0.0396 0.5628 0 0.4372 0 0 112

2.55 0.61 0.69 0.1825 0.0396 0.5600 0 0.4400 0 0 118

3.55 0.61 0.69 0.1723 0.0396 0.5584 0 0.4416 0 0 119

α=0.50 1.55 0.56 0.56 0.1075 0.0396 0.5700 0 0.4300 0 0 21

β=0.50 2.55 0.56 0.56 0.1030 0.0396 0.5652 0 0.4348 0 0 21

3.55 0.56 0.56 0.0985 0.0396 0.5623 0 0.4377 0 0 21

1.55 0.61 0.69 0.1162 0.0396 0.5770 0 0.4230 0 0 22

2.55 0.61 0.69 0.1138 0.0396 0.5714 0 0.4286 0 0 23

3.55 0.61 0.69 0.1114 0.0396 0.5678 0 0.4322 0 0 21

α=0.88 1.55 0.56 0.56 0.0257 0.0396 0.6178 0 0.3822 0 0 26

β=0.88 2.55 0.56 0.56 0.0250 0.0396 0.5959 0 0.4041 0 0 26

3.55 0.56 0.56 0.0244 0.0396 0.5846 0 0.4154 0 0 25

1.55 0.61 0.69 0.0274 0.0397 0.6590 0 0.3410 0 0 24

2.55 0.61 0.69 0.0271 0.0396 0.6261 0 0.3739 0 0 24

3.55 0.61 0.69 0.0268 0.0396 0.6088 0 0.3912 0 0 23
Note: For each set of parameters, the results are the same over the 100 executions under population
sizes of 30, 50, and 100.
CV stands for CPT Value; FR stands for Final Return; x∗

1, x∗
2, x∗

3, x∗
4 and x∗

5 stand for optimal
investment ratios for stock Disney, Pfizer, Altria, Intel and riskless asset respectively.
a Average time in seconds under population size 30.
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Table 3.5: Results for solution of CPT with linear value function and general weighting
function

λ γ δ CV FR x∗1 x∗2 x∗3 x∗4 x∗5 Timea

α=1 1.55 0.56 0.56 0.0165 0.0397 0.6669 0 0.3331 0 0 13

β=1 2.55 0.56 0.56 0.0162 0.0396 0.6201 0 0.3799 0 0 14

3.55 0.56 0.56 0.0158 0.0396 0.6002 0 0.3998 0 0 13

1.55 0.61 0.69 0.0176 0.0398 0.7958 0 0.2042 0 0 13

2.55 0.61 0.69 0.0174 0.0397 0.6831 0 0.3169 0 0 13

3.55 0.61 0.69 0.0172 0.0396 0.6446 0 0.3554 0 0 13
Note: For each set of parameters, the results are the same over the 100 executions under population
sizes of 30, 50, and 100.
CV stands for CPT Value; FR stands for Final Return; x∗

1, x∗
2, x∗

3, x∗
4 and x∗

5 stand for optimal
investment ratios for stock Disney, Pfizer, Altria, Intel and riskless asset respectively.
a Average time in seconds under population size 30.

Table 3.6: Results for solution of CPT with general value function and linear weighting
function

α β λ CV FR x∗1 x∗2 x∗3 x∗4 x∗5 Timea

γ=1 0.36 0.24 1.55 0.2316 0.0396 0.5892 0 0.4108 0 0 89

δ=1 0.36 0.24 2.55 0.2292 0.0396 0.5790 0 0.4210 0 0 100

0.36 0.24 3.55 0.2268 0.0396 0.5738 0 0.4262 0 0 103

0.50 0.50 1.55 0.1350 0.0396 0.6366 0 0.3634 0 0 13

0.50 0.50 2.55 0.1345 0.0396 0.6202 0 0.3798 0 0 13

0.50 0.50 3.55 0.1340 0.0396 0.6091 0 0.3909 0 0 12

0.88 0.88 1.55 0.0312 0.0400 0.9577 0 0.0423 0 0 23

0.88 0.88 2.55 0.0311 0.0398 0.8348 0 0.1652 0 0 23

0.88 0.88 3.55 0.0310 0.0398 0.7767 0 0.2233 0 0 23
Note: For each set of parameters, the results are the same over the 100 executions under population
sizes of 30, 50, and 100.
CV stands for CPT Value; FR stands for Final Return; x∗

1, x∗
2, x∗

3, x∗
4 and x∗

5 stand for optimal
investment ratios for stock Disney, Pfizer, Altria, Intel and riskless asset respectively.
a Average time in seconds under population size 30.
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Table 3.7: Results for solution of CPT with linear value function and linear weighting
function

λ CV FR x∗1 x∗2 x∗3 x∗4 x∗5 Timea

α=1 γ=1 1.55 0.0199 0.0400 1 0 0 0 0 12

β=1 δ=1 2.55 0.0198 0.0400 1 0 0 0 0 13

3.55 0.0197 0.0399 0.9162 0 0.0838 0 0 13
Note: For each set of parameters, the results are the same over the 100 executions under population
sizes of 30, 50, and 100.
CV stands for CPT Value; FR stands for Final Return; x∗

1, x∗
2, x∗

3, x∗
4 and x∗

5 stand for optimal
investment ratios for stock Disney, Pfizer, Altria, Intel and riskless asset respectively.
a Average time in seconds under population size 30.

their money in Disney stock unless the loss aversion exceeds a certain threshold.

In general, not all assets are selected by CPT investors. In addition, although there

are major differences amongst the CPT values, different parameters are not so influential

on the final returns. Unlike EUT, which has only one parameter, there are several

parameters with different characteristics in CPT, and their influence on portfolio choice

varies. Moreover, different investment behavior might occur in the stock market under

some extreme cases.

3.5 Further discussion on CPT under normal distribution

It requires enormous computing for determining a portfolio that maximizes the expected

utility of final wealth in the next period. Some scholars have demonstrated that a point

on the efficient frontier curve can yield maximum expected utility when investor’s utility

function is quadratic, or the probability distribution of returns is joint elliptical(Levy

and Markowitz, 1979, Meyer, 1987, Kroll et al., 1984, Ross, 2011). Markowitz (2014)

suggested that it is much more convenient and economical to determine a set of mean-

variance efficient portfolios than it is to fine the portfolio which maximizes expected

utility.

Based on the Taylor series expansion around return in the next period，an investor’s

utility function may be expanded as follows:

u(R) = u(E(R)) + u′E(R)(R− E(R)) +
1

2
u′′E(R)(R− E(R))2

+

∞∑
n=3

1

n!
u(n)E(R)(R− E(R))n (3.24)

Take the expected value of both sides of the equation (3.24), the investor’s expected
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utility can be expressed as

E(u(R)) = u(E(R)) +
1

2
u′′E(R)(V ar(R))2 +

∞∑
n=3

1

n!
u(n)E(R)νn(R) (3.25)

where νn(R) denotes the n-th central moment of R.

It can be proved that equation (3.25) has the property of being both increasing in

E(R) and decreasing in V ar(R) if u(· ) is a nondecreasing and concave function and R

obeys a normal distribution (Ross, 2011).

Levy and Levy (2004) discussed the relation between prospect theory and mean-

variance rule and employ the mean-variance optimization algorithm to construct efficient

portfolios of prospect theory. And, they employed stochastic dominance rules to prove

that the PT and mean-variance efficient sets almost coincide. That is the set of making

the CPT function reach maximizing is a subset of efficient frontier. However, they did

not study the relationship between value of PT and expected return or its variance. As

much as we know, no paper has so far been discussed about relationship between value

of PT or CPT and expected return or its variance. The problem mentioned above can

be solved in this dissertation.

It has known that the CPT value is function of both portfolio’s mean and its variance

according to equation (3.11).

Proposition 3：Under Assumption 1 and 2, if the portfolio return follows a normal

distribution, the value function takes the form in equation (3.2) and the probability

weighting functions take the form in equation (3.5) and (3.6) with γ = δ = 1. We have

the following conclusions:

(1) CPT value is an increased function of mean of portfolio return on the whole

interval.

(2) CPT value is an increased function of variance of portfolio return in negative

interval. CPT value can be either a non-increased or non-decreased function of variance

of portfolio return in positive interval. Consequently, it needs to be further investigation

that whether the CPT value is a non-increased function or non-decreased function of

variance of portfolio return on whole interval.

3.6 Summary

There has recently been increased research interest in CPT, but most studies have not

taken portfolio optimization into account. In this study, we built a single-period portfolio
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selection model for CPT investors in a market consisting of one riskless asset and several

risky assets.

Considering the complex nature of CPT, which is a non-convex, non-concave, and

non-smooth function, we proposed a real-coded genetic algorithm with adaptive opera-

tors to solve the model.

Computational experiments were conducted to demonstrate that the proposed AR-

CGA outperformed traditional GAs. All results were the same after 100 executions with

different population sizes, which shows that the approach proposed in this dissertation

efficiently and effectively solves the problem of portfolio choice under CPT.

We have also presented the first study of the influence of various parameters on the

CPT values. The experimental results showed that α and β are more sensitive than γ

and δ. Not all assets in the portfolio were selected by the CPT investors, and different

investment behavior might occur in the stock market under certain extreme cases.

And moreover, we studied the relationship between CPT value and the mean of

portfolio return and the standard deviation of portfolio return under multivariate normal

distribution.

These cases provide a reference for further research into the portfolio choice problem

under CPT.
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Chapter 4

Portfolio choice under scenarios

In this chapter, a method of coupling scenario techniques for simulating the scenario of

the real stock market with a genetic algorithm to determine the optimal solution is pre-

sented. The major challenge is to provide data on mathematical models in determining

optimal solutions to address uncertainties in the field of financial investment.

Due to the effectiveness of the mathematical models hinges on the quality of the

scenarios. Bradley and Crane (1972) first employed and presented these techniques to

the financial world using several scenario generation methods support financial decision

making. This chapter therefore focuses on three different bootstrap method to achieve

scenario generation.

The bootstrap method is a way of resampling in statistics, and was first introduced

by Efron (1992). The key idea is to provide a resampling simulation technique to

estimate the complicated characteristics of the underlying population. The bootstrap

method does not generate random variates, but repeatedly samples the original data

(Efron and Tibshirani, 1993) instead. It is a highly effective tool in the absence of a

parametric distribution for obtaining a set of data. The bootstrap method is thus used

especially when the number of available samples is relatively small and a larger number

of observations is required. In fact, the use of bootstrapping for scenario generation has

been suggested by Kouwenberg and Zenios (2006). Generally, in the analysis of financial

time series, the probability distribution of a data set is unknown; the bootstrap method

is suitable for assessing the distribution properties of some statistic of such data.

As mentioned in the previous chapter, genetic algorithms (GAs), as the robust search

and optimizations techniques, have been successfully used in various fields. In recent

years, numerous studies have shown that GAs can help to solve optimal portfolio prob-

lems in finance. However, to our knowledge, no studies have incorporated GAs with
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Bootstrap method to solve the portfolio choice problem under CPT.

This chapter presents a CPT model for optimal portfolio selection under scenario and

couples the bootstrap method for the evaluation of investment portfolio scenarios with

genetic algorithm to determine the optimal solution. Sufficient empirical comparisons

of different choices under different reference points in the CPT model are provided in

this chapter.

4.1 Objective function for CPT investors

Under Assumption 1-2, consider a set of investment assets i = 1, 2, . . . , n. At the end

of a certain holding period these assets generate random returns R = (R1, R2, . . . , Rn)
T .

The CPT investors attempt to allocate their budget to these assets by deciding on a

specific allocation x = (x1, x2, . . . , xn)
T , xi ≥ 0 (no short sales permitted) and

∑n
i=1 xi =

1 (basic budget constraint). Using the vector 1 = (1, 1, . . . , 1)T , we may write the basic

budget constraints in vector form as

X = {x : xT1 = 1,x ≥ 0}

At the next horizon period the uncertain return of the portfolio is denoted by

Rp = xTR =
n∑

i=1
xiRi. This indicates that the current selection may impact on fu-

ture investment returns.

Let rf be the value of a (scalar) reference point that separates gains and losses, we

define the deviation Y from the reference level by

Y = Rp − rf (4.1)

Obviously, Y is treated as a random variable. Suppose that Y1, . . . , Ym form a ran-

dom sample with some distribution. Let Y1 denote the smallest value in the random

sample, Y2 denote the next smallest value, and so on. In this way, Ym denotes the largest

value in the sample, and Ym−1 denotes the next largest value. Thus, the random vari-

ables Y1, . . . , Ym are the order statistics of the sample. Let y1, . . . , yi, y0, yi+1, . . . , ym

denote the values of the order statistics for an arbitrarily sample with probability

p1, . . . , pi, p0, pi+1, . . . , pm, respectively. If all values of y1, . . . , ym are nonzero, then

y0 = 0 with probability p0 = 0 is inserted; otherwise, there exists y0 = 0 with probabil-

ity p0 ̸= 0. (In fact, the presence or absence of this zero value in the results has no effect

on the CPT value, as will be seen later.) According to Tversky and Kahneman Tversky
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and Kahneman (1992), the CPT investors are supposed to evaluate the investment as

the following:

(y1, p1; . . . ; yi, pi; y0, p0; yi+1, pi+1; . . . ; ym, pm) (4.2)

The original version of the PT suffers from potential violations of first-order stochas-

tic dominance, and PT can be applied only to gambles with at most two nonzero out-

comes. We therefore apply CPT by Tversky and Kahneman (1992). When the proba-

bilities are weighted in PT, however, it is the cumulative probabilities that are weighted

in CPT:

πi =

 π+
i = w+(pi + · · ·+ pm)− w+(pi+1 + · · ·+ pm)

π−
i = w−(p1 + · · ·+ pi)− w−(p1 + · · ·+ pi−1)

(4.3)

where i denotes outcome yi (i = 1, . . . ,m).

By using the equation (3.3) as value function and use equations (3.5) and (3.6) as

probability weighting functions, we present the CPT value of the investment for stocks

by

V (x) =

m∑
i=1

πi · v(yi(x)) (4.4)

CPT investors tend to make portfolio choices by maximizing their CPT value; that

is, CPT investors determine their investments by maximizing the value of equation (4.4).

We now formally propose the following objective function:

max V (x)

s.t.
n∑

i=1
xi = 1,

xi ≥ 0, i = 1, . . . , n

. (4.5)

4.2 Bootstrap method

4.2.1 Non-parametric method

A critical problem in portfolio selection is the description of a random investment port-

folio return, and the problem is generally addressed by a set of random returns or their

expected return. Thus a set of scenarios can be generated by different methods, such as

a historical approach, bootstrap method, or Monte Carlo simulation. In this chapter,
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the past observations of asset returns are used to generate the expected returns by using

the bootstrap method. Specifically, we need to combine historical data with the boot-

strap technique to simulate the required number of sample data. However, it is difficult

to determine the parameters of the returns. Thus, the non-parametric bootstrap (NPB)

method is used in this chapter.

Bootstrap method simulates what would happen if we sample repeatedly from the

basic set and also records observing data that the available data are created through

available data, i.e. resampling (Härdle et al., 2012). The dimension of the created

data is smaller than the dimension of the original data, achieving the best results if

the bootstrap random selections are designed with replications and having the same

dimension as original data (Franke et al., 2004).

As shown in the Figure 4.1, new random data are drawn by the way of sampling with

replacement，with equal size original set. As we observed that the statistical analysis

can be obtained by using of B sampling. Figure 4.1 describes the basic principle of this

method. Bootstrapping repeatedly draws random samples, each with size n, from the

original sample of size n, and makes the probability 1/ n for each original variate in each

sampling with replacement.

r

r1

r2

r3

r4

r5

random sampling 

with replacement

r1* r2* rB*

r2

r4

r3

r4

r1

r4

r1

r3

r3

r5

r5

r4

r3

r4

r5

Figure 4.1: Basic principle of the bootstrap method.

Suppose R1, R2, . . . , Rn be independent, identically distributed real random variables

with a distribution function F . Let θ = θ(F ) be an unknown parameter of F which

needs to be estimated. Although there are many statistical estimations, this chapter

focuses only on the expected value. The one big advantage of non-parameter bootstrap

method is that the distribution of data does not need to be known in advance. The

unknown distribution F can be replaced by the empirical distribution function as shown

56



in equation (4.6) function using of bootstrap method.

F̂n(χ) =
1

n

n∑
i=1

1{Ri≤χ} (4.6)

where 1{A} is the indicator of event A and χ denotes the number of elements being less

than or equal to χ in the sample.

4.2.2 Bootstrap methods for financial time series

Consider a strictly stationary time series of the ith investment asset held for T time pe-

riods. This is expressed by Ri = (Ri,1, . . . , Ri,T ), which means that the joint probability

distribution of (Ri,1, . . . , Ri,T ) does not change when shifted in time. As mentioned ear-

lier, it is difficult to find the probability distribution of Ri, which is denoted by Fi. Let

θ(Fi) be some parameter of interest such as the mean, median, or standard deviation of

Fi. Let θ̂(Ri) be an estimator of θ(Fi) computed using observations Ri. Here, we focus

on the mean of the returns.

The bootstrap method does not require any parametric assumption on Fi, but can

utilize smaller sample sizes as a formalization of the resampling procedure for statistical

inference. Let the observed data take the values ri = (ri,1, . . . , ri,T ). The mean return

of one asset is

r̄i =
1

T

T∑
j=1

ri,j (4.7)

and the expected portfolio return at time index T + 1 is expressed as

rp =

n∑
i=1

xir̄i (4.8)

Then, draw T sample data r∗i = (r∗i,1, . . . , r
∗
i,T ) from (ri,1, . . . , ri,T ) by using of boot-

strap method. The mean

r̄∗i =
1

T

T∑
i=1

r∗i,T (4.9)

can be computed from r∗i . Note that the number of sampled data in the bootstrap

method is equal to the number of observed data, and there is no permutation because

we have performed random sampling without replacement.

By repeating this process S times, we obtain the scenario matrix:
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Rs =


r̄∗11 r̄∗21 · · · r̄∗S1

r̄∗12 r̄∗22 · · · r̄∗S2
...

... . . . ...

r̄∗1n r̄∗2n · · · r̄∗Sn

 (4.10)

A vector RS
p = xTRs = (r1p, . . . , r

s
p) is obtained from the scenario matrix through

multiplication by a set of decision-making vectors. If the elements in RS
p are sorted in

ascending order of value, we obtain result similar to (4.2). A set of optimal decision-

making vectors that maximize the objective function will be discussed later.

Generally, selecting the best bootstrap technique for estimating the mean depends on

whether the observed data Ri are assumed to be independent or dependent, which can

be difficult to identify. Scenario generation, however, should be considered to encompass

all future possibilities. We will refer to the bootstrap method for independent data as

the standard bootstrap (SB) technique and that for dependent data as the moving block

bootstrap (MBB) technique and non-overlapping block (NBB) technique.

Standard bootstrap

The SB method is implemented by sampling the data randomly with replacement,i.e.,

observed data can be resampled with a constant probability 1/T . We can derive

R∗
i = (R∗

i,1, . . . , R
∗
i,T ) from (Ri,1, . . . , Ri,T ). For a more comprehensive review of the

SB technique, see Ref.Kouwenberg and Zenios (2006).

Moving block bootstrap methods

Note that Ri = (Ri,1, . . . , Ri,T ) is treated as a series of outcomes with probability

1/T . However, this assumption is not always valid, especially for financial time series.

Singh (1981) showed that SB technique, as considered in Hall (1985) for independent

data, failed to produce valid approximations in the presence of dependent data. To

overcome the limitations of the SB technique for dependent financial time series data,

Hall Hall (1985) suggested resampling the data using blocks of observed data instead

of individual data, and Kunsch (1989) advocated resampling blocks of observations at

a time (see also Bühlmann and Künsch (1995)). Besides, the dependence structure of

the random variables at short lag distances is preserved by keeping the neighboring

observations together within the blocks. As a result, resampling blocks allows one to

carry this information over to the bootstrap variables. Thus, a similar method was
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named the “moving block bootstrap” Liu and Singh (1992).

Suppose that Ri = (Ri,1, . . . , Ri,T ) is the observed financial time series of the ith

assets. Let ℓ be an integer satisfying 1 ≤ ℓ < T . Define the overlapping blocks

Bi,1, . . . ,Bi,M of length ℓ as

Bi,1 =(Ri,1, . . . , Ri,ℓ)

Bi,2 = (Ri,2, . . . , Ri,ℓ+1)

. . .

Bi,M = (Ri,T−ℓ+1, . . . , Ri,T )

(4.11)

where M = T − ℓ + 1. To generate the MBB samples, we select b = T/ℓ blocks at

random with replacement from (Bi,1,Bi,2, . . . ,Bi,M ). Because each resampled block

has ℓ elements, concatenating the elements of the b resampled blocks serially yields

T = b · ℓ bootstrap observations. Some typical choices of ℓ are ℓ = CT 1/k, for k = 3, 4,

where C ∈ R is a constant (Kreiss and Lahiri, 2012).

Non-overlapping block bootstrap

Another bootstrap technique involves resampling from non-overlapping blocks to gen-

erate the bootstrap observations Carlstein (1986). Suppose that ℓ is an integer in

[1, T ] (note that NBB is equivalent to SB when ℓ=1). Let N = T/ℓ and generate

NBB samples by selecting N blocks at random with replacement from the collection

(B̄i,1, B̄i,2, . . . , B̄i,N ) where

B̄i,1 = (Ri,1, . . . , Ri,ℓ)

B̄i,2 = (Ri,ℓ+1, . . . , Ri,2ℓ)

. . .

B̄i,N = (Ri,(N−1)ℓ+1, . . . , Ri,T )

(4.12)

It is easier to examine the characteristics of the NBB estimators than those of the

MBB estimators of a population parameter, because NBB uses non-overlapping blocks.

However, the NBB estimators typically have higher MSEs for a given block size ℓ com-

pared with their MBB counterparts Lahiri (1999).
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Figure 4.2: The prices of 3 stocks.

4.3 Numerical computation experiments

4.3.1 Parameters of the CPT investors and data

As mentioned in chapter 3, the CPT investors’ objective function has five parameters

α, β, γ, δ, and λ, which were proposed by Tversky and Kahneman (1992), as shown in

Table 3.2.

Choosing the historical period is important for generating scenarios, but no rule for

determining the length of the time period. Given the monthly return, we select a longer

interval as soon as possible. In this dissertation, we consider portfolios composed of

Walt Disney (DIS), General Electric (GE), and International Business Machines (IBM)

stocks, and use the adjusted monthly closing price for the period January 2, 1962, to

April 1, 2016 (dividends are not included). As much as 651 observations have been

conducted in total, as shown in Figure 4.2 (data taken from Yahoo Finance).

The difference between the log and arithmetic returns is negligible for one-day hori-

zon. However, some typical errors in the portfolio log-returns will be found if we neglect

the conversion between the log-return and arithmetic return over much longer horizons.

As a result, the difference between the log and arithmetic returns is generally taken into

account, so we use the arithmetic returns and to obtain 650 monthly returns for each of

the three stocks considered in this dissertation, as shown in Figure 4.3-4.5.

The foundation of time series analysis is stationarity. First, we test for the unit

root of stock returns, which tells us whether a time series variable is non-stationary and
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Figure 4.3: The monthly returns for DIS stock.
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Figure 4.4: The monthly returns for GE stock.
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Figure 4.5: The monthly returns for GE stock.

Table 4.1: Descriptive statistics and test results for sample data

Company Mean Std.Dev Skewness Kurtosis JB test ADF test

DIS 0.0155 0.0895 0.0042 4.9735 1 0.001

GE 0.0106 0.0686 0.0540 4.2515 1 0.001

IBM 0.0089 0.0696 0.2270 4.8843 1 0.001

possesses a unit root. The results of ADF tests show that the returns on each of the

three stocks reject the null hypothesis at the 1% significance level, i.e., there are no unit

roots in the three sequences, and they can be considered as stationary sequences (see

Table 4.1). We now analyze the descriptive statistics about the rate of return. Table

4.1 presents the basic statistics of the sample data. What we observed is that each

of the stocks exhibits positive expected returns. Interestingly, the standard deviation

of the GE returns is less than that of the IBM stocks, but GE’s stock has a higher

expected return than IBM’s and is preferred by rational people as will be discussed

later. Besides the IBM stock, the skewness is small, indicating that the distributions are

largely symmetric. Each of the stocks exhibits bigger kurtosis values and has a heavy-

tailed distribution. The study suggest the JB test shows that none of the stocks is

normal at the 1% significance level. The normality can also be tested using a Q-Q plot.

If the data is normally distributed, then the quantiles will lie on a straight line. Fig.

4.6-4.8 show the significant deviation from the straight line in the tails for each stock,
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Table 4.2: Descriptive statistics and test results for simulation data

Compay Mean Std.Dev. Skewness Kurtosis JB test

SB DIS 0.0154 0.0035 -0.0030 2.9830 0

GE 0.0106 0.0027 0.0143 2.9401 0

IBM 0.0089 0.0027 0.0317 2.9334 0

NBB DIS 0.0155 0.0032 -0.0157 3.0165 0

GE 0.0107 0.0026 -0.0120 2.9701 0

IBM 0.0089 0.0025 -0.0011 2.9803 0

MBB DIS 0.0160 0.0011 0.0207 2.9612 0

GE 0.0107 0.0009 -0.0148 3.0711 0

IBM 0.0093 0.0009 0.0517 2.9895 0

especially in the lower tail, indicating that the distribution of standardized returns is

more heavy-tailed than the normal distribution.
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Figure 4.6: Q-Q plots for DIS

4.3.2 Computational experiments

All algorithms are programmed in MATLAB 2014b and are run on a 2.6GHz and 8GB

RAM Apple MacBook Pro Computer.

First, we set the block length to 10 for MBB and NBB. Second, we generate 650

data at random with replacement using the SB technique and 65 blocks at random with

replacement using MBB and NBB techniques. Third, we repeated these procedures

10,000 times to produce three scenario matrices, i.e., SB matrix, MBB matrix, and NBB
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Figure 4.7: Q-Q plots for GE
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Figure 4.8: Q-Q plots for IBM
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matrix, in which each row corresponds to one stock and each column represents every

result of a single simulation. We can find the the relevant statistics for the simulation

samples presented in Table 4.2. There is no significant change in the mean compared

with the original data. However, the standard deviation, skewness, and kurtosis of the

sample data for the three stocks have changed dramatically. All of the sample data

passed the JB test for normality at the 1% significance level.

Generally, reference points are an important concept in CPT, but there has been

little research into their impact on investment behaviors. Several different reference

point scenarios have been discussed by Pirvu and Schulze (2012), providing no further

details.

Table 4.3: CPT value, portfolio return and optimal solution with different reference
point

rf CPT VALUE Return DIS∗ GE∗ IBM∗

SB 0.003 0.0194 0.0154 1 0 0

0.004 0.0165 0.0143 0.8047 0.0913 0.1040

0.005 0.0135 0.0131 0.6050 0.1814 0.2136

0.006 0.0080 0.0123 0.4442 0.3102 0.2455

NBB 0.003 0.0191 0.0151 0.9075 0.0925 0

0.004 0.0169 0.0145 0.7914 0.2086 0

0.005 0.0146 0.0139 0.6755 0.3245 0

0.006 0.0114 0.0128 0.4708 0.4418 0.0874

MBB 0.003 0.0215 0.0160 1 0 0

0.004 0.0200 0.0160 1 0 0

0.005 0.0185 0.0160 1 0 0

0.006 0.0169 0.0160 1 0 0

As mentioned above, each column of the scenario matrixes represents every result

of a single simulation. We can obtain a CPT value by coupling a solution generated

by ARCGA with one scenario matrix. By using continuously generating solutions, we

identify the optimal solution that maximizes the objective function. The ARCGA was

used to produce different initial populations of sizes 50, 100, and 150, and the algorithm

was executed 100 times. All 100 results were the same for each population size. The

results are presented in Table 4.3, where rf denotes the reference point value, Return

denotes the portfolio return, and the superscript ∗ denotes the optimal investment ratio

for that stock.
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The computational results show that the proposed ARCGA is an effective and stable

algorithm for the given objective function. For comparison, we use an exhaustive method

to find the global optima. The results show that these solutions are exactly equal to

those generated by the proposed ARCGA.

Generally, the different scenarios have a significant influence on investment behav-

iors under CPT, and the MBB scenario has the most significant effect. Regardless of

how the reference point changes, CPT investors always put all of their money into DIS

under the MBB scenario. Our second observation is that CPT investors tend to change

their investment ratio significantly under SB and NBB as the value of rf changes. Fur-

thermore, as rf increases, the CPT values decrease significantly and the returns become

smaller, which demonstrates numerically that greater expectations lead to greater dis-

appointment.

4.4 Summary

In this chapter, we formulated an optimal portfolio selection model for a single period

under CPT. Considering that the objective function is non-convex, non-concave, and

non-smooth, we proposed an ARCGA to determine the optimal solution. We compared

the portfolio choices of CPT investors based on different bootstrap techniques for sce-

nario generation. Computational experiments show that the ARCGA can efficiently and

stably solve the portfolio problem for CPT investors. In addition, this is the first study

to consider the impact of different reference points on investment behavior under CPT.
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Chapter 5

Portfolio choice with constraints

Currently, financial regulators propose some risk management requirements in terms

of losses. Mathematically，risk management is a process of how to control the loss

distributions. Value-at-risk (VaR) and conditional value-at-risk (CVaR) are popular

tools for managing risk. This chapter solves the portfolio optimization under CPT with

VaR constraints, CVaR constraints, and other relevant constraints. And, the optimal

portfolios under various constraints are provided in this chapter.

5.1 Risk constraints

Suppose thatR = (R1, R2, . . . , Rn)
T is the return of each risky asset and x = (x1, x2, . . . , xn)

T

is the proportion in each risky asset. The loss of a portfolio over a fixed period can be

defined as

L(x,R) = −
n∑

i=1

xiRi = −xTR (5.1)

For the normal distribution and discrete distribution, according to equation (2.18)

the following VaR formulate can be easily to verify.

When the Loss L is normal distribution with mean µ and the standard variance σ,

i.e L ∼ N(µ, σ2), then

V aRc(x,R) = µ+ σΦ−1(c) (5.2)

where Φ represents the standard Normal distribution function, as shown Figure (5.1).

The loss L is a discrete distribution which takes the values −xTRi with equal prob-

ability. The vectors Ri, i = 1, 2, . . . , N are called the scenarios. V aRc can be expressed

as follow:

V aRc(x,R) = M[⌊cN⌋:N ](−xTR1, . . . ,−xTRN ) (5.3)
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whereM[k:N ](u
1, . . . , uN ) denotes the k-largest among (u1, . . . , uN ). It means thatM[1:N ]

represents the minimum and M[N :N ] denotes the maximum. The floor function ⌊ϑ⌋ is

called the greatest integer function or integer value, gives the largest integer less than or

equal to ϑ (Spanier and Oldham, 1987, Graham et al., 1994). As shown in Figure 5.2.

For discrete scenarios, V aRc is a nonconvex, discontinuous function, which may lead

to difficulties when computing optimal portfolios.

Loss

Probability

VaR

CVaR

Figure 5.1: VaR and CVaR with normally distribution

Probability
1-c

Max Loss

Loss

Frequency

VaR

CVaR

Figure 5.2: VaR and CVaR with discrete distribution

Generally, risk is considered as a correction factor for expected returns before the

presentation of the MPT by Markowitz (1952). Markowitz proposed to measure the risk

according to variance and semi-variance. However, it has been criticized that standard

deviation cannot well explain the phenomenon of “fat tails”in financial investment

field and penalizes ups and downs from the mean equally.

Risk management has received much attention from practitioners and regulators in
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the last few years, with VaR emerging as one of the most popular tools. Jorion (2006),

Linsmeier and Pearson (2000), Alexander and Baptista (2002), Chance (2004) noted

that VaR is widely used as a risk management tool by corporate treasurers, dealers,

fund managers, financial institutions, and regulators, etc. To measure risk, we need to

establish a relationship between the random variables, such as loss, and a non-negative

real number, i.e., R : R → R. The scalar measure of risk allows to sort and to compare

investments based on their respective risk values. Artzner et al. (1999) introduced the

concept of coherent risk measure and have extensively criticized the use of VaR as a

measure of risk. Rockafellar (2007) proposed a functional R : L2 → (−∞,∞) as a

coherent risk measure in the extended sense if 1

• (R1): R(C) = C for all constants C;

• (R2): R((1− λ)R+ λR′) ≤ (1− λ)R(R) + λR(R′) for λ ∈ (0, 1) (convexity);

• (R3): R(R) ≤ R(R′) when R ≤ R′ (monotonicity);

• (R4): R(R) ≤ 0 when ∥ Rk −R ∥2→ 0 with R(Rk) ≤ 0 (closedness);

• (R5): R(λR) = λR(R) for λ > 0 (positive homogeneity)

The property of subadditivity can be obtained from combination of (R1) with (R2).

R(R+R′) ≤ R(R) +R(R′) (5.4)

Subadditivity means diversification that total risk of portfolio assets less than or

equal to sum of risk of each asset.

VaR can summarize risk in a number, becoming the standard measure for financial

analysts to quantify market risk. Many scholars have made use of VaR as constraint

for problem of portfolio selection. Gaivoronski and Pflug (1999) solved a problem of

maximizing portfolio with constraints of acceptable VaR. Yiu (2004) studied the optimal

portfolio problem when a VaR constraint is imposed. They provided a way to control

risks in the optimal portfolio and to full the requirement of regulators on market risks.

Kleindorfer and Li (2005) solved the multi-period optimal portfolio problem under VaR
1Lp function space is defined as:

∥e∥p= (

m∑
j=1

|ej |p)1/p

with p = 1 representing the absolute measure (or Manhattan distance), p = 2 the standard deviation
(or Euclidean distance) where we can use variance instead because of the monotonic transformation
property, and p = ∞ represents the largest absolute value where we can represent the losses for Minimax
optimization.
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constrained and showed its relationship to efficient frontier analysis in standard portfolio

theory.

VaR, although a popular tool, has been controversial because of mathematical short-

coming and it can not measure the risk of extreme events exceeding VaR. VaR has been

criticized by some scholars. Mausser and Rosen (1999) showed that VaR can be ill-

behaved as a function of portfolio positions and can exhibit multiple local extrema,

which can be a major handicap in trying to determine an optimal mix of positions or

even the VaR of a particular mix. Basak and Shapiro (2001) showed that when an

agent faces a VaR constraint at the initial date in a continuous-time model, the agent

may select a larger exposure to risky assets than he or she would have chosen in its

absence. VaR is not a coherent measure of risk, unless the underlying distribution is

elliptical, such as normal distribution, student’s distribution etc. That is, VaR fails to

satisfy the property of subadditivity and the VaR of a portfolio with two securities may

be larger than the sum of the VaR of the securities in the portfolio. For these reasons,

the aforementioned researchers have proposed using conditional value-at-risk (CVaR)

rather than VaR. Risk often was restricted that can be assumed by a strict subset of all

investors.

CVaR has proved to be superior than VaR in some respects (Rockafellar and Uryasev,

2000, 2002). CVaR, introduced by Rockafellar and Uryasev (2000), is a popular tool for

managing risk as well. As an alternative measure of risk, CVaR is known to have better

properties than VaR. CVaR, is the probability-weighted average of tail losses, or losses

exceeding VaR (Dowd, 2003).

The CVaR can surpass the measure of VaR defined as the maximum loss at a specified

confidence level which is commonly used as constraints in financial analysis in recent

years. Alexander and Baptista (2004) analyze the portfolio selection implications arising

from imposing a VaR constraint on the mean variance model, and compare them with

those arising from the imposition of a conditional CVaR constraint. Boudt et al. (2013)

used CVaR as budgets to analyze asset allocation. Krokhmal et al. (2002) solved the

optimization problems for maximizing expected returns with CVaR constraints. Tian

et al. (2010) extended approach proposed by Krokhmal et al. (2002) throughout adding

CVaR-like constraints to the traditional portfolio optimization problem. Yamai and

Yoshiba (2005) illustrated the way how the tail risk of VaR can cause serious problems

in certain cases and CVaR can play its role.

For a continuous loss distribution, the CVaR at confidence level c ∈ (0, 1) for loss L
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is expressed as

CV aRc(x,R) =
1

1− c

∫ +∞

V aRc

l dFL(l) (5.5)

=
1

1− c

∫
1{L≥V aRc}lfL(l)dl

If L is normal distribution N(µ, σ2), then

CV aRc(x,R) = µ+ σ
φ(Φ−1(c))

1− c
(5.6)

where Φ(·) is the standard normal distribution function and φ(·) is the standard normal

density function, as shown in Figure 5.1.

For discrete scenarios, similar to equation (5.3) and as shown in the Figure 5.2,

CVaR can be calculated by

CV aR(x,R) =
1

N

1

1− c

∑
−xTRi≥V aRc

−xTRi (5.7)

Actually, VaR and CVaR measure different parts of the distribution and have differ-

ent properties of mathematics. For some companies, they tend to prefer VaR to CVaR

that VaR may be far less than CVaR with the same confidence level. Thus they don’t

have to pay more for underlying losses, always preferring to provide reports to share-

holder and regulators according to VaR. VaR may be better for optimization portfolio

whereas CVaR may not perform well on certain conditions (Sarykalin et al., 2008).

As far as we know, no papers research in portfolio optimization under CPT coupled

with constraints of VaR and CVaR, save for the Pirvu and Schulze (2012). These make it

possible for us to comment on the differences presented in this dissertation and Pirvu and

Schulze (2012). First, Pirvu and Schulze (2012) imposed VaR and CVaR as constraints

for solving the ill-posedness problem, which is non-existence in our model. Second, Pirvu

and Schulze (2012) did not consider how the constraints of VaR and CVaR will affect

behavior of CPT investor, which is one of focuses in this dissertation. Several different

situations about reference point are proposed in their paper, but they failed to provide

further details.

Then the portfolio optimisation problem of CPT with a VaR risk constraint can be

written as
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max V (D(x)) (5.8)

s.t. V aRc < l

n∑
i=1

xi ≤ 1,

xi ≥ 0, i = 1, 2 . . . , n

where V (D(x)) is the equation (3.11).

The portfolio optimisation problem of CPT with a CVaR risk constraint can be

written as

max V (D(x)) (5.9)

s.t. CV aRc < l

n∑
i=1

xi ≤ 1,

xi ≥ 0, i = 1, 2 . . . , n

where V (D(x)) is the equation (3.11).

There are other constraints such as portfolio return or investment proportions of the

some assets except VaR being a constraint of investment for control the risk. To simplify

the analysis，several problems are considered based on the objective function (3.11) as

follows 2:

max V (D(x)) (5.10)

s.t.

n∑
i=1

xi ≤ 1,

ř0 < x0 < r̂0

xi ≥ 0, i = 1, 2 . . . , n

2x0 is the investment proportion for risk-free asset, i.e. x0 = 1−
n∑

i=1

xi. (ř0, r̂0) is interval constraint

of investment proportion for risk-free asset.
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max V (D(x)) (5.11)

s.t.
n∑

i=1

xiµi + x0rf > r̊

n∑
i=1

xi ≤ 1,

ř0 < x0 < r̂0

xi ≥ 0, i = 1, 2 . . . , n

max V (D(x)) (5.12)

s.t. V aRc < l

n∑
i=1

xi ≤ 1,

ř0 < x0 < r̂0

xi ≥ 0, i = 1, 2 . . . , n

5.2 Deviation constraints

VaR is usually expressed as a positive number for the worst loss at given confidence level.

VaR has implicit meaning that it is a relative concept (Jorion, 2006). The relative VaR

is defined as the loss relative to the mean on the horizon:

V aR(µ) = E(W )−W ∗ = −W0(R
∗ − µ) (5.13)

where W0 is the initial investment and R is its rate of return, W ∗ = W0(1 +R∗) is the

lowest portfolio value at given confidence c.

Generally, VaR is defined as the absolute VaR which is relative to zero or without

reference to the expected value:

V aR(0) = W0 −W ∗ = −W0R
∗ (5.14)

The mean return is very small under short investment horizons, where both relative

VaR and absolute VaR may give similar results. Jorion (2006) argued that relative VaR

73



is conceptually more appropriate because it regards risk according to a deviation from

the mean on the target date, appropriately accounting for the time value of money. We

can say that the method of relative VaR is more conservative when the mean value

is positive and consistent with definitions of unexpected loss, becoming common for

measuring credit risk over long horizons.

Generally, statistics are most often obtained from a set of data by simulations. The

expected value of portfolio returns, for example, obtained by the bootstrap method

shown in chapter 4, are always positive. It is difficult to work with absolute VaR, being

not necessary to be considered as another measure.

Rockafellar et al. (2002) proposed deviation measure to quantify risk. Deviation

measure is a function to evaluate financial risk in a different method than a general risk

measure. A function D : L2 → (0,+∞) is a deviation risk measure if

• (D1): D(X + C) = D(X) for all R and constants C, shift-invariant;

• (D2): D(C) = 0 for constant C, but D(R) > 0 for nonconstant R;

• (D3): D((1− λ)R+ λR) ≤ (1− λ)D(R) + λD(R) for λ ∈ (0, 1) convexity;

• (D4): D(R+R′) ≤ D(R) +D(R′) for all R and R′;

• (D5): D(R) ≤ d when ∥ Rk −R ∥2→ 0 with D(Rk) ≤ d (closedness).

There is a one-to-one correspondence between the deviation measures and risk mea-

sure as follow:

D(R) = R(R− E(R)) (5.15)

R(R) = D(R) + E(R) (5.16)

additionally, R is coherent ⇔ D is coherent.

Standard deviation is a special case of deviation measure and it is symmetric. It is

noteworthy to be aware that the deviation measure, which serves to evaluate the risk,

is not the same thing as risk measure.

The c-VaR deviation measure and c-CVaR deviation measure, referring to Rockafel-

lar et al. (2002), are defined as

V aR△
c (R) = V aRc(R− E(R)) (5.17)

and

CV aR△
c (R) = CV aRc(R− E(R)) (5.18)

74



as shown in Figure 5.3.

Probability
1-c

Max Loss

Loss

Frequency

VaR

CVaR

VaR Deviation

CVaR Deviation

Max Loss Deviation

Mean

Figure 5.3: VaR deviation and CVaR deviation

The portfolio optimisation problem of CPT with a VaR deviation constraint can be

written as

max V (x) (5.19)

s.t. V aR△
c < l (5.20)

n∑
i=1

xi = 1,

xi ≥ 0, i = 1, 2 . . . , n

where V (x) is the equation (4.4).

Then the portfolio optimisation problem of CPT with a CVaR deviation constraint

can be written as

max V (x) (5.21)

s.t. CV aR△
c < l (5.22)

n∑
i=1

xi = 1,

xi ≥ 0, i = 1, 2 . . . , n
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where V (x) is the equation (4.4).

5.3 Numerical experiments

This chapter tends to solve the problems (5.8), (5.9), (5.10),(5.11), and (5.12) using data

from chapter 3. As for problems (5.19) and (5.21), we use the data presented in chapter

4.

The multivariate normal distribution is considered in this section, with the VaR

constraints being given with 0.95 and 0.99 confidence level,i.e.V aR0.95 < 0.01 and

V aR0.99 < 0.01. The following conclusions can be drawn according to the results shown

in Table 5.1 by comparing to Table 3.4 provided in chapter 3. Our findings suggest that

investment behaviors of CPT investors have changed significantly and CPT investors

without constraint of VaR do not choose risk-free assets while CPT investors with con-

straint of VaR invest risk-free assets. Another important findings further reveal that

CPT values were significantly reduced to CPT investor with VaR constraints. Compared

with the cases without VaR constraints, the portfolio returns are reduced. It shows that

risk reduction comes at the cost of returns.

Table 5.1: Results for solution of CPT function under VaR constraints
γ δ CV FR x∗1 x∗2 x∗3 x∗4 x∗5 c

α=0.36 0.56 0.56 0.1169 0.0299 0.2805 0 0.2265 0 0.4930 0.99

β=0.24 0.56 0.56 0.1170 0.0299 0.2809 0 0.2268 0 0.4923 0.95

0.61 0.69 0.1412 0.0299 0.2825 0 0.2245 0 0.4930 0.99

0.61 0.69 0.1412 0.0299 0.2789 0 0.2288 0 0.4923 0.95

α=0.50 0.56 0.56 0.0733 0.0299 0.2745 0 0.2328 0 0.4927 0.99

β=0.50 0.56 0.56 0.0733 0.0299 0.2734 0 0.2346 0 0.4920 0.95

0.61 0.69 0.0810 0.0299 0.2804 0 0.2266 0 0.4930 0.99

0.61 0.69 0.0810 0.0299 0.2847 0 0.2228 0 0.4925 0.95

α=0.88 0.56 0.56 0.0138 0.0299 0.2731 0 0.2343 0 0.4926 0.99

β=0.88 0.56 0.56 0.0138 0.0299 0.2770 0 0.2308 0 0.4922 0.95

0.61 0.69 0.0149 0.0299 0.2770 0 0.2302 0 0.4928 0.99

0.61 0.69 0.0149 0.0299 0.2881 0 0.2192 0 0.4927 0.95
Note: For each set of parameters, the results are the same over the 100 executions under population
sizes of 30, 50, and 100.
CV stands for CPT Value; FR stands for Final Return; x∗

1, x∗
2, x∗

3, x∗
4 and x∗

5 stand for optimal
investment ratios for stock Disney, Pfizer, Altria, Intel and riskless asset respectively.
λ = 2.55 and c represent the confidence level.
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CVaR constraints are presented at given confidences with 0.95 and 0.99, assuming

that the CV aR0.95 < 0.005 and CV aR0.99 < 0.005 respectively. By comparing the

results of Table 5.2 and Table 3.3 provided in chapter 3, we found that investment

behaviors of CPT investors have changed significantly. CPT investors without constraint

of CVaR do not choose risk-free assets, while CPT investors with CVaR constraint will

invest risk-free assets. And investment proportion on risk-free asset with constraint of

CVaR is greater than investment proportion on risk-free asset with constraint of VaR,

and that for the same CPT investor，the CPT value under CVaR constraint is much

less than the CPT value without CVaR constraint.

From Table 5.1 and 5.2, we noticed that portfolio returns have decreased significantly

once risk constraints are added, demonstrating that reduced portfolio returns are the

cost of avoiding the potential risk.

Table 5.2: Results for solution of CPT function under CVaR constraints
γ δ CV FR x∗1 x∗2 x∗3 x∗4 x∗5 c

α=0.36 0.56 0.56 0.0883 0.0249 0.1387 0 0.1141 0 0.7472 0.99

β=0.24 0.56 0.56 0.0872 0.0248 0.1329 0 0.1118 0 0.7553 0.95

0.61 0.69 0.1083 0.0249 0.1369 0 0.1160 0 0.7471 0.99

0.61 0.69 0.1070 0.0248 0.1392 0 0.1053 0 0.7555 0.95

α=0.50 0.56 0.56 0.0517 0.0249 0.1366 0 0.1163 0 0.7471 0.99

β=0.50 0.56 0.56 0.0509 0.0248 0.1421 0 0.1023 0 0.7556 0.95

0.61 0.69 0.0572 0.0249 0.1324 0 0.1208 0 0.7468 0.99

0.61 0.69 0.0563 0.0248 0.1405 0 0.1040 0 0.7555 0.95

α=0.88 0.56 0.56 0.0075 0.0249 0.1326 0 0.1206 0 0.7468 0.99

β=0.88 0.56 0.56 0.0072 0.0248 0.1179 0 0.1275 0 0.7546 0.95

0.61 0.69 0.0081 0.0249 0.1344 0 0.1187 0 0.7469 0.99

0.61 0.69 0.0078 0.0248 0.1407 0 0.1037 0 0.7556 0.95
Note: For each set of parameters, the results are the same over the 100 executions under population
sizes of 30, 50, and 100.
CV stands for CPT Value; FR stands for Final Return; x∗

1, x∗
2, x∗

3, x∗
4 and x∗

5 stand for optimal
investment ratios for stock Disney, Pfizer, Altria, Intel and riskless asset respectively.
λ = 2.55 and c represent the confidence level.

A constrain of the proportion of riskless investment, x∗5 ∈ (0.2, 0.4), is imposed on

model (5.10). As shown in Table 5.3, the portfolio return is less than 0.20, showing

the return of riskless asset. Consequently, based on the model (5.10), a constraint of

portfolio return is added, i.e., r̊ > 0.2 in model 5.11. The results also suggest that CPT

investors reduce the proportion of riskless asset under the constraint of final portfolio
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Table 5.3: Results for solution of CPT with constraints of riskless asset
Model CV FR x∗1 x∗2 x∗3 x∗4 x∗5 c

(5.10) 0.0279 0.0183 0.1510 0.2295 0.1265 0.1319 0.3612 \

(5.11) 0.0275 0.0225 0.2358 0.1646 0.1216 0.1742 0.3037 \

(5.12) 0.0146 0.0145 0.1896 0.3251 0.0877 0.0605 0.3372 0.95

(5.12) 0.0147 0.0123 0.0399 0.3483 0.1716 0.0555 0.3847 0.99
Note: For each set of parameters, the results are the same over the 100 executions under population
sizes of 30, 50, and 100.
CV stands for CPT Value; FR stands for Final Return; x∗

1, x∗
2, x∗

3, x∗
4 and x∗

5 stand for optimal
investment ratios for stock Disney, Pfizer, Altria, Intel and riskless asset respectively.
λ = 2.55 and c represent the confidence level.

return.

Table 5.4 also gives the results of model 5.12, providing the constrain with both

riskless assets and VaR risk measure at 0.95 and 0.99 confidence level.

As can be seen in the Table 5.4, the proportion of investing in x1 is greatly reduced

under VaR constraint with the 0.99 confidence level, compared with the 0.95 confidence

level.

Table 5.4: CPT value, portfolio return and optimal solution with VaR deviation measure
at c=0.95 and l=0.004

rf CPT VALUE Return DIS∗ GE∗ IBM∗

SB 0.003 0.0174 0.0137 0.6640 0.2934 0.0426

0.004 0.0158 0.0137 0.6640 0.2926 0.0433

0.005 0.0135 0.0131 0.6050 0.1814 0.2136

0.006 0.0080 0.0123 0.4442 0.3102 0.2455

NBB 0.003 0.0180 0.0141 0.7104 0.2881 0.0015

0.004 0.0164 0.0141 0.7104 0.2881 0.0015

0.005 0.0146 0.0139 0.6755 0.3245 0

0.006 0.0114 0.0128 0.4706 0.4428 0.0866

MBB 0.003 0.0215 0.0160 1 0 0

0.004 0.0200 0.0160 1 0 0

0.005 0.0185 0.0160 1 0 0

0.006 0.0169 0.0160 1 0 0

The VaR and CVaR deviation constraints associate to confidence level c and let

V aR△
0.95 < 0.004,V aR△

0.99 < 0.004, CV aR△
0.95 < 0.009 and CV aR△

0.99 < 0.009. It finds

that there is a significantly affect the behavior of investors by introducing the risk con-
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Table 5.5: CPT value, portfolio return and optimal solution with VaR deviation measure
at c=0.99 and l=0.004

rf CPT VALUE Return DIS∗ GE∗ IBM∗

SB 0.003 0.0146 0.0117 0.3327 0.3555 0.3118

0.004 0.0130 0.0117 0.3330 0.3555 0.3115

0.005 0.0114 0.0117 0.3330 0.3555 0.3115

0.006 0.0056 0.0116 0.3048 0.4319 0.2633

NBB 0.003 0.0154 0.0123 0.4426 0.2487 0.3087

0.004 0.0139 0.0123 0.4427 0.2489 0.3084

0.005 0.0123 0.0123 0.4422 0.2491 0.3087

0.006 0.0103 0.0120 0.3629 0.4137 0.2234

MBB 0.003 0.0215 0.0160 1 0 0

0.004 0.0200 0.0160 1 0 0

0.005 0.0185 0.0160 1 0 0

0.006 0.0169 0.0160 1 0 0

Table 5.6: CPT value, portfolio return and optimal solution with CVaR deviation mea-
sure at c=0.95 and l=0.009

rf CPT VALUE Return DIS∗ GE∗ IBM∗

SB 0.003 0.0194 0.0154 0.9999 0.0001 0

0.004 0.0165 0.0143 0.8048 0.0912 0.1040

0.005 0.0135 0.0131 0.6048 0.1816 0.2136

0.006 0.0080 0.0122 0.4230 0.3422 0.2348

NBB 0.003 0.0191 0.0150 0.9024 0.0838 0.0138

0.004 0.0163 0.0141 0.7451 0.1315 0.1234

0.005 0.0140 0.0135 0.5895 0.4105 0

0.006 0.0114 0.0128 0.4708 0.4418 0.0874

MBB 0.003 0.0135 0.0106 0.0077 0.9923 0

0.004 0.0120 0.0106 0.0077 0.9923 0

0.005 0.0103 0.0106 0.0077 0.9923 0

0.006 0.0087 0.0106 0.0077 0.9923 0
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Table 5.7: CPT value, portfolio return and optimal solution with CVaR deviation mea-
sure at c=0.99 and l=0.009

rf CPT VALUE Return DIS∗ GE∗ IBM∗

SB 0.003 0.0194 0.0154 0.9999 0.0001 0

0.004 0.0165 0.0143 0.8048 0.0912 0.1040

0.005 0.0135 0.0131 0.6048 0.1816 0.2136

0.006 0.0080 0.0122 0.4442 0.3102 0.2455

NBB 0.003 0.0191 0.0151 0.9075 0.0925 0

0.004 0.0169 0.0145 0.7914 0.2086 0

0.005 0.0146 0.0139 0.6755 0.3246 0

0.006 0.0114 0.0128 0.4708 0.4418 0.0874

MBB 0.003 0.0141 0.0110 0.0763 0.9237 0

0.004 0.0126 0.0110 0.0763 0.9237 0

0.005 0.0109 0.0110 0.0763 0.9237 0

0.006 0.0093 0.0110 0.0763 0.9237 0

straint in certain scenarios. As shown in Figure 5.4-5.7, the more stringent requirements

for risk control, the more decentralized investment allocation, but the combination of in-

vestment income will be reduced accordingly, being consistent with the intuition, Thus,

the VaR loses its effect as risk constraint under certain scene.

5.4 Summary

The chapter extends description of chapters 3 and 4 by using of VaR/CVaR risk measures

and VaR/CVaR deviation measures for portfolio optimization under CPT. As far as is

known, no paper would give the definitive results in the CPT optimization problem

with constraint as mentioned in chapters 4 and 5. This chapter presents two kinds of

model for optimizing portfolio under CPT with risk and deviation constraints using

multivariate normal distribution and Bootstrap scenarios simulation.

This chapter discusses and compares the CPT objective function without risk or

deviation constraints and with risk or deviation constraints. It found that CPT investor

with constraints of risk and deviation significantly changed their investment behavior.

Moreover, due to the constraints of risk and deviation, the CPT value decreased and

the investment income declined.
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Chapter 6

Summary

There has recently been increased research interest in CPT, but most studies have

not taken portfolio optimization into account. It has been demonstrated that the op-

timization problem of CPT is a non-convex, non-concave, and non-smooth function.

Consequently, it exceeds the capabilities of standard methods in optimization. In this

dissertation, several single-period portfolio selection models were proposed for solving

the portfolio choice problem under CPT in financial market. These study results pro-

vided several references for further research into the portfolio selection problem under

CPT.

6.1 Contributions

To my knowledge, there has been little research on portfolio choice under CPT, save for

the Pirvu and Schulze (2012) and Grishina et al. (2017), those studies have focused on

experimental study or a market consisting of one risky asset and one riskless asset.

The main contributions in this dissertation are:

1. An adaptive real coded genetic algorithm was proposed to solve the CPT model

due to complexity. The real coded genetic algorithm is better suited to large-dimensional

search space and the adaptive properties can improve the efficiency of searching. This

dissertation also presents the first study of the influence of various parameters for value

function and weighting functions on the CPT value and portfolio selection.

Grishina et al. (2017) proposed a genetic algorithm to solve the optimization problem

of CPT with value function and objective probability function, which ignores the im-

portant property of probability distortion. We painstakingly examined nonlinear value

function and probability weighting functions in this dissertation.
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2. We proposed a method by coupling bootstrap scenario generation techniques with

genetic algorithm to solve the optimization problem under CPT. The method can extend

research to any probability distributions of portfolio returns, such as skewness or fat tails.

In addition, this was the first study to consider the impact of different reference points

on investment behavior under CPT. Besides this dissertation demonstrated numerically

that greater expectations lead to greater disappointment.

3. This dissertation solved the portfolio optimization under CPT with risk con-

straints, deviation constraints, and other constraints. As far as we know, no papers

focus on portfolio optimization under CPT coupled with constraints of VaR and CVaR,

save for the Pirvu and Schulze (2012). Even though Pirvu and Schulze (2012) imposed

VaR and CVaR as constraints for solving the ill-posedness problem, which was non-

existence in our model. Moreover, Pirvu and Schulze (2012) did not consider how the

constraints of VaR and CVaR will affect behavior of CPT investor, which was gap to

fulfill in this dissertation.

6.2 Future Work

Further investigation is needed to compare the portfolio choices under EUT with those

under CPT, and a discussion is expected to be provided about the implications of these

differences on the decision-making behavior of perfect and bounded rationality. Because

CPT can describe the behavior of bounded rational decision makers in a psychologically

more realistic way, over the past decade, researchers in the field of behavioral economics

have repeatedly considered how prospect theory is to be applied in economic settings;

these efforts are now bearing fruit.

To the best of our knowledge, however, very few papers have studied the subject

of comparing EUT and CPT. Sebora and Cornwall (1995) studied the implications for

strategic decision makers under EUT and CPT. Bleichrodt et al. (2001) proposed a

quantitative modification of standard utility elicitation procedures using the idea of

CPT to correct for commonly observed violations of expected utility. Harrison and

Rutström (2009) compared EUT with CPT on one wedding and a decent funeral.

Although the future work is to compare the results of portfolio optimization under

CPT and EUT, it is difficult to say which is better than the other. EUT and CPT

are two different theories based on different assumptions. EUT is originally developed

as a normative theory about how rational decision makers can maximize their utility.

CPT is conceived as a descriptive theory of how boundedly rational decision makers
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(real decision makers) ultimately achieve the most satisfying results. As Tversky and

Kahneman (1986) stated,“The normative and the descriptive analyses of choice should

be viewed as separate enterprises.”
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Appendix A

Proofs

Proof of Proposition 1: According to the definitions of the value functions and

weighing functions, they all are differentiable. We can obtain

∫ +∞
0 v+(t)dw+(1− FD(t))

= v+(t)w+(1− FD(t))|+∞
0

−
∫ +∞
0 w+(1− FD(t))dv

+(t) (A.1)

using integration by parts.
He and Zhou (2011) showed that, if the return on a portfolio follows a normal

distribution and |t| and 0 < FD(t) < 1 are sufficiently large, then (3.5) and (3.6) satisfy:

w+′
(FD(t))fD(t) = O(|t|−2−ε)

w−′
(FD(t))fD(t) = O(|t|−2−ε) (A.2)

w+′
(1− FD(t))fD(t) = O(|t|−2−ε)

w−′
(1− FD(t))fD(t) = O(|t|−2−ε) (A.3)

where ε > 0.
Furthermore, from L’Hopital’s rule, we know that

lim
t→∞

v+(t)w+(1− FD(t))

= lim
t→∞

w+(1− FD(t))
1

v+(t)

= 0 (A.4)

We can obtain that
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∫ +∞

0
v+(t)dw+(1− FD(t))

= −
∫ +∞

0
w+(1− FD(t))dv

+(t) (A.5)

Similarly, we have ∫ 0

−∞
v−(t)dw+(FD(t))

= −
∫ 0

−∞
w−(FD(t))dv

−(t) (A.6)

Proof of Proposition 2: Hogg and Craig (1995) have shown that a linear transfor-

mation of multivariate normal random vectors has a multivariate normal distribution,

namely, suppose that R has the distribution Nn(µ,Σ) and D = AR+ b, where A is an

m× n matrix and b ∈ Rm. Then, D has the distribution Nm(Aµ,AΣA′). Proposition

1 can be proved when m = 1.

Poof of Proposition 3：

Assume that portfolio return R is a norm with mean µp and variance σ2
p，then：

f(r) =
1√
2πσp

e
− (r−µp)

2

2σ2
p (A.7)

and

z =
r − µp

σp
⇔ r = σpz + µp (A.8)

z is standard normal random variable and has density function as follow:

ϕ(z) =
1√
2π

e−
z2

2 (A.9)

CPT functions can be represented as follows：

V (R) = V (R+) + V (R−) (A.10)

V (R+) = −
∫ +∞

0
v+(r)dw+(1− FR(r)) (A.11)

V (R−) =

∫ 0

−∞
v−(r)dw−(FR(r)) (A.12)
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and

V +(R) =

∫ +∞

0
v+(r)fR(r)dr (A.13)

=

∫ +∞

−µp
σp

v+(σpz + µ)fR(σpz + µp)d(σpz + µp) (A.14)

=

∫ +∞

−µp
σp

v+(σpz + µp)
1√
2πσp

e
− (σpz+µ−µp)

2

2σ2
p σpdz (A.15)

=

∫ +∞

−µp
σp

v+(σpz + µp)
1√
2πσp

e
− (σpz)

2

2σ2
p σpdz (A.16)

=

∫ +∞

−µp
σp

v+(σpz + µp)
1√
2πσp

e−
z2

2 σpdz (A.17)

=

∫ +∞

−µp
σp

v+(σpz + µp)ϕ(z)dz (A.18)

It takes the derivative of V +(R) with respect to µp

∂V +(R)

∂µp
=

∫ +∞

−µp
σp

v+
′
(σpz + µp)ϕ(z)dz > 0 (A.19)

Similarly,

V −(R) =

∫ −µp
σp

−∞
v−(σpz + µp)ϕ(z)dz (A.20)

It takes the derivative of V −(R) with respect to µp

∂V −(R)

∂µp
=

∫ −µp
σp

−∞
v−

′
(σpz + µp)ϕ(z)dz > 0 (A.21)

It takes the derivative of V +(R) with respect to σp

∂V +(R)

∂σp
=

∫ +∞

−µp
σp

v+
′
(σpz + µp)ϕ(z)zdz (A.22)

The derivative of the standard normal distribution is

ϕ′(z) =
1√
2π

e−
z2

2 · (−z) = −zϕ(z) (A.23)
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∂V +(R)

∂σp
=

∫ +∞

−µp
σp

v+
′
(σpz + µp){−ϕ(z)}′dz (A.24)

= −[v+
′
(σpz + µp)ϕ(z)]|z=+∞

z=−µp
σp

+

∫ +∞

−µp
σp

v+
′′
(σpz + µp)σpϕ(z)dz (A.25)

= v+
′
(0)ϕ(−µp

σp
) + σp

∫ +∞

−µp
σp

v+
′′
(σpz + µp)ϕ(z)dz (A.26)

It is obvious that v+′
(0)ϕ(−µp

σp
) > 0 and σp

∫ +∞
−µp

σp

v+
′′
(σpz + µp)ϕ(z) < 0

Similarly,

∂V −(R)

∂σp
= v−

′
(0)ϕ(−µp

σp
) + σp

∫ −µp
σp

−∞
v−

′′
(σpz + µp)ϕ(z)dz > 0 (A.27)
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Appendix B

Portfolio choice based on

rationality

The efficient frontier can be obtained according to 3.22 and 3.23, as shown in Figure

B.1.

Suppose the risk aversion parameter are 2, 3, and 4 in problem (2.13), which are

represent three kinds of investors, the portfolio returns are 0.0395552，0.0395479，and

0.0395445. It confirms that risk-averse will lead to a lower expected return. The problem

(2.14) shows that the optimal portfolio is the position being tangent to the efficient

frontier.

The problem (2.15) is the case where riskless asset is introduced. According to

mutual fund separation theorem, mean-variance efficient portfolios can be formed simply

as a combination of holdings of the risk-free asset and holdings of a particular efficient

fund that contains only risky assets. We give the result of tangency portfolio that is the

market portfolio including all risky assets. The results are shown in the Table B.1.

Table B.1: Results for rational solution
Problem µp σp x∗1 x∗2 x∗3 x∗4

2.13-2 0.0395552 0.0084773 0.5552 0 0.4448 0

2.13-3 0.0395479 0.0084743 0.5479 0 0.4521 0

2.13-4 0.0395445 0.0084733 0.5445 0 0.4555 0

2.14 0.0395429 0.0084729 0.5429 0 0.4571 0

2.15 0.0395524 0.0084760 0.5524 0 0.4476 0
Note: 2.13-2, 2.13-3 and 2.13-4 means that b is 2,3 and 4 in equation (2.13) respectively.
x∗
1, x∗

2, x∗
3, and x∗

4 stand for optimal investment ratios for stock Disney, Pfizer, Altria, and Intel
respectively.
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Figure B.1: The efficient frontier in chapter 3
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