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by RUIZ BRITO Luis Arturo

For an Unmanned Aerial Vehicle (UAV) robot, to be correctly located in indoor environ-

ments is of great importance. By successfully reaching a commanded position in a given place,

the robot can efficiently carry on assigned tasks. To aid on the subject of localization, this works

presents an UAV three dimensional localization method, which is performed by means of trilat-

eration by a multi robot formation of Omnidirectional Wheeled Mobile Robots (OWMR). The

formation of ground robots has the ability to move freely anywhere reachable in the environ-

ment. As the formation explores the environment, it has an uncertainty from measured sensors

which propagates and affects the predicted UAV position. The OWMR uncertainties translate

into errors in positions which are handled using estimation algorithms to keep the UAV loca-

tion accurate. An extended Kalman filter is implemented as well as a particle filter and their

results compared. While the former approach has good tracking properties the later has good

response to the nonlinearities in the system. Localization is not attainable everywhere on a map

and areas where it can be hard to correctly perform the localization are described in a solva-

bility map. This map has properties that can be employed to select the robot formation shape

and into the design of favorable paths for the UAV motion. The solvability map is calculated by

means of the derived probability distribution of the measured uncertainties of the trilateration

algorithm. To accomplish these objectives, control schemes are correctly implemented and ver-

ified in the OWMR formation to carry on individual and combined tasks. All the concepts are

taken from theory, starting from researches in the field, and they are supported with numerical

simulations and real time experiments in a networked multi robot environment.

Keywords: indoor localization, localization, multi robot, omnidirectional, OWMR, real time,

solvability, UAV
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複数移動ロボットシステムを用いる屋内 UAV 
ロボットの実時間自己位置推定に関する研究 

 
ルイスブリト ルイスアルトゥーロ 

 
 屋内環境で移動する無人飛行ロボット（UAV）にとっては、正確な自己位置を推定することは

極めて重要であり、指定された目標位置へ正確な移動は、UAV ロボットの効率的に各種作業の遂

行に大きく寄与する。GPS による位置推定が利用できない屋内環境においては、測位センサやカ

メラによる周囲環境に基づく自己位置推定手法には、センサ自身及び処理に多くの電力を消費し、

UAV ロボットの長期間な作業に影響している。本研究では、屋内環境で活動する複数の移動ロボ

ットのフォーメーションによる UAV ロボットの実時間の三次元自己位置推定の手法を提案し、移

動ロボットの位置及び UAV ロボットの計測の不確実性による UAV 位置推定の誤差伝搬及び自己

位置推定の可解性問題を研究し、自己位置推定の性質を解明し、UAV との協調運動の制御戦略を

提案し、数値シミュレーション及び実機を用いて検証を行った。提案した UAV の三次元自己位置

推定手法は、複数移動ロボットが構築したフォーメーションから三辺測量手法に基づくものであ

り、移動ロボットに搭載したカメラから測定した UAV ロボットとの距離と SLAM アルゴリズムか

ら推定した移動ロボットの位置の二種類の情報で実装できる。従って提案する自己位置推定法は、

移動ロボットの種類や構造に依存しなく、異なる座標系で制御されるロボットに実装でき、不整

地で作業するロボットフォーメーションからも適用できる優位性がある。本論文では、不確実性

を有する移動ロボットのフォーメーションから UAV ロボットの自己位置推定システムの構築及び

アルゴリズムを提案し、拡張カルマンフィルターとパーティクルフィルターの二つの実装を示し、

数値シミュレーションと実機ロボットを通して有効性を示した。さらに、実環境で不確実性の要

素からロボットシステムの運動制御への影響について、理論面から複数移動ロボットのフォーメ

ーション誤差及び計測誤差から UAV ロボットの位置推定への伝搬特性の定式化と、自己位置推定

の可解性マップ（Solvability Map）という新しいコンセプトの提案を行った。その上、確率方程式

による三次元可解性マップの高速計算アルゴリズムを提案し、フォーメーションと三次元可解性

との関係を分析すると共に、自己位置推定の可解性を維持する移動ロボットのフォーメーション

制御戦略を構築し、実システムに実装を行い、実験を通して有効性を示した。以上のように、本

論文では、複数移動ロボットのフォーメーションによる UAV ロボットの自己位置推定の新しい協

調ロボットシステムを提案した上、不確実性を有するシステムにおいて理論的な要素を研究し、

誤差伝搬および可解性マップに基づく協調運動制御の手法を確立した。これらの成果は、今後実

システムへの応用において、有効なシステム構築の指針と協調運動制御の手段となる。 
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1 Introduction

Robotics is a field that has seen huge improvements in the last years. While at the beginning

robotics focused on how a robot could perform in the environment, dynamics were one of

the main researched areas in the field. How to land theory into real systems was a real issue.

Nowadays, thanks to advancements in technology, robotics is moving more and more to help

machines understand the environment and interact with it.

One of the goals in the field for a robot is to be truly autonomous: to perform activities by

its own without human intervention. In disaster zones or difficult access areas there are many

scenarios where a robot is needed for inspection, taking samples, make a survey of the area

and/or feedback all the information it can gather to evaluate further actions.

Anywhere a robot, specifically an Unmanned Aerial Vehicle (UAV), has to perform an

activity, it needs to know where it is, its position and the positions of objects around it. With

that information, this robot can successfully carry on given tasks. Due to interpretations like

this one, an UAV localization within a given environment is one of the main topics of research

nowadays. The need to know were objects are located in indoor environments is of interest

because it allows to analyze areas, minimizing risks to humans and/or damages to equipment.

In outdoor environments localization has the advantage of access to the Global Position-

ing System (GPS) technology and the tasks a robot needs to perform in an open environment

usually do not need to be extremely accurate. For indoor localization, network arrangements

have proven to work to mimic GPS technology; fixed stations are placed everywhere required

inside a building and they transmit a signal to a receiver which has the ability to compute its

position based on the signals it receives.

Following the network approach, stations can be fixed cameras, used to build motion cap-

ture (Mo-cap) systems. Systems as VICON and Optitrack have proved to have an exceptional

accuracy. On the down side the systems have to be setup before using them, so it is not optimal

and in no way convenient in disaster situations.
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1.1 About this project

The idea of this research comes from taking a proven static localization system for indoor en-

vironments to a dynamic level. Making an analogy to GPS technology, the stations as well as

the receiver can move freely in a indoor scenario. This also comes in hand with the interactions

between multiple robots. It has been recognized that some times a single robot might not be

able to handle all the requirements for a given tasks. It may be too small or too big, too slow

or too fast, too heavy or too light. Thus, it has been proposed to use multi robot approaches

to carry on complex duties. The advantages of one type of robot can potentially minimize the

deficiencies of other types of robots. The system overview is depicted in Fig. 1.1.

OWMR2

Motion Path

OWMR3

OWMR1

OWMRn

UAV

FIGURE 1.1: System overview. The proposed multi robot approach intended to
be used for this project. A formation of OWMR will localize an UAV in three
dimensions in a dynamic environment.

For this project, the mentioned moving stations are a group of Omnidirectional Wheeled

Mobile Robot (OWMR) in a multi robot formation, and the receiver is an UAV. An UAV needs

to trade the amount of weight it can carry between sensors needed for its own performance

and the ones used for the tasks it was given. Thus, to aid in the performance of the UAV, it is

proposed to use a multi robot approach to calculate the UAV position.
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In this multi robot architecture, the UAV only requires to handle the necessary sensors

for the task assigned taking in account its wide range and dynamic 3D motion, using as much

flying time as possible. Wheeled multi robot formations can be easily equipped with high

resolution cameras and powerful on board image processing computers (making power con-

sumption not so critical) to perform both Simultaneous Localization And Mapping (SLAM)

and UAV localization tasks.

The localization is executed as a trilateration in three dimensions. Trilateration is used

by GPS satellite systems to localize targets on the surface of the Earth but have limitations in

indoor scenarios as the satellites are occluded by the environment. Now, the same approach can

be taken for indoor scenarios if instead of satellites we talk about a multi robot formation. In

trilateration, the unknown is called the receiver, the UAV in this project, and the measurements

came from stations or receivers, which in this case will be the robot formation of OWMR.

Robot3Robot1

Robot2

Robot5 Robot4

UAV

FIGURE 1.2: Different types of robots for localization. The proposed multi robot
localization is intended to be used with any kind of robots as long as they can
calculate their positions and the range measurements required to trilaterate.
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Notice that as long as they can calculate their own positions and the distance they have to

the UAV, the robots of this formation can have any shape, and any dynamics can define their

motion. At this stage we are focusing more on the algorithms for the localization and formation

control, so using OWMR is more convenient. The motion of the robot formation is independent

of the drone motion and can be of great aid to the UAV performance. The trilateration based

method do not necessary constraints the mobile robots to a flat surface when the formation of

mobile robots is known. This allows the method to be applied for disaster investigation tasks

on even and uneven terrains, see Fig. 1.2.

1.2 Thesis organization

In this thesis the localization in three dimensions is performed, and to achieve it, this thesis is

organized as follows:

• Chapter 1 , Introduction.

• Chapter 2 , Background and Related Research.

• Chapter 3 , Localization by Trilateration.

• Chapter 4 , Sensed Measurements for Localization.

• Chapter 5 , UAV Localization with a Multi Robot Formation.

• Chapter 6 , Uncertainty Propagation and Accuracy Analysis.

• Chapter 7 , Solvability due to Uncertainty in Measurements.

• Chapter 8 , Formation Selection and Control.

• Chapter 9 , Numerical Simulations.

• Chapter 10 , Real Time Localization Experiments.

• Chapter 11 , Conclusions.

• Appendix A , Caley-Menger Determinants.

• Appendix B , Jacobians of gp.

• Appendix C , Derivation of Partials of Hzt.

• Appendix D , Derived Probability Distributions.
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In Chapter 1 the purpose of this work is explained and in Chapter 2 the background in-

formation is provided. Then, in Chapter 3 the trilateration is explained and Chapter 4 has the

methodology to obtain the measurements required for this task. Chapter 5 defines how the

multi robot localization is performed. Chapters 6 and 7 show some of the methods used to

analyze formations with the localization method presented in this work. Chapter 8 presents

some formation control algorithms used in this project. Finally, Chapters 9 and 10 show some

numerical and real time experiments to prove the algorithms proposed. The conclusions are

presented in Chapter 11 and in Appendices A to D some of the mathematical tools employed

are explained.

1.3 Remarks

During the realization of the Ph.D. studies, 2 journal papers and 2 conference papers were

published. These publications backup the interest of the scientific community in the research

carried on, as well as the methods employed to solve the problem. The publications written are

listed below:

• [1] S. Magariyama, H. Matsumoto, L. Ruiz, et al., “Estimation of a feasible dynamic caging

zone for multirobot object transportation”, in Cyber Technology in Automation, Control,

and Intelligent Systems (CYBER), 2014 IEEE 4th Annual International Conference on, 2014,

pp. 508–514.

• [2] L. Ruiz and Z. Wang, “System design for the localization of an uav in 3d using a mobile

multi-robot platform”, JOURNAL OF JAPAN SOCIETY FOR DESIGN ENGINEERING,

vol. 52, no. 2, pp. 81–97, 2017.

• [3] L. Ruiz and Z. Wang, “Error propagation and solvability in uav localization based

on trilateration with a multi robot formation”, Int. J. of Mechatronics and Automation, Ac-

cepted, In Print, 2017.

• [4] L. Ruiz and Z. Wang, “Real time multi robot 3d localization system using trilatera-

tion”, in IEEE International Conference on Robotics and Biomimetics, 2016, International Con-

ference on, 2016, pp. 1510–1515.
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Publication [1] was used as an introduction to multi robot environments and the research

methodology. In [2] the concept of this investigation was proposed. In [2]–[4], the general

concepts for the trilateration, localization and measurements mentioned in the publications

is explained (Chapters 3 to 5). The propagation of the error from publications [3] and [4] is

discussed in Chapter 6 as well as how the uncertainties in the problem were envision. The

solvability map concept was introduced in this thesis, Chapter 7 is divided in the Montecarlo

method from publication [2] and the derived probability closed form formula from publication

[3]. The formation control algorithms in Chapters 8 are taken from publications [2] and [3].

Finally, [4] shows the real time implementation, defining how the project was taken from theory

to a real time system using robots and systems developed in the laboratory.
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2 Background and Related Research

2.1 Localization with stations and receivers

There are many methods to compute the location of an object having a set of stations and

receivers, being one of the most studied triangulation and trilateration[5], [6]. In both methods

the stations can be robots which know their positions in the environment, and the receiver, is a

robot with an unknown position. As depicted in Fig. 2.1 for two dimensions, p1 and p2 are the

stations and pu is the receiver. Triangulation can determine the pose of an object, its coordinates

and orientation based on angle measurements, θ1 and θ2. Trilateration can calculate the position

based on distance measurements l1 and l2. When using trilateration the receiver’s orientation

cannot be computed, but, this can be mitigated using additional measurements from another

sensor, e.g. an Inertial Measurement Unit (IMU). The problem as shown in Fig. 2.1 can be

solved using trigonometric identities with an increased difficulty in three dimensions.

p1

p2

pu

p1

p2

pu

θ1

θ2

l1

l2

Triangulation Trilateration

FIGURE 2.1: Triangulation and trilateration. Triangulation and trilateration differ
in the way the measurements are taken, and thus, how the problem is solved. p1

and p2 have known coordinates and pu is the unknown.
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Triangulation is used widely in vision localization researches as the three point resection

problem or the PnP problem[6]–[8]. Here two images of the same object from different perspec-

tives can be used to retrieve the object position, see Fig. 2.2.

FIGURE 2.2: PnP problem. Triangulation is used to calculate the pose of an object
if two or more images exist of that object. A set of features detected in more than
one image is used to retrieve the pose.

As any object can be defined by several features in a given image, this method need to

iterate to find the best pose for a given set of points, normally using Random Sample Consensus

(RANSAC) approaches[9]–[12]. This method strongly depends on coordinates, specially their

relationship, and the orientation errors will greatly affect the accuracy of the localization. As a

vision system, in general, some preprocessing calibration helps to limit this error but as a multi

mobile robots, this will be not easy and feasible as what fixed multi-camera system can do.

Localization by trilateration is used extensively by GPS devices to position targets on the

surface of the Earth. In [13] it is mentioned that GPS has the disadvantages costly hardware

and power requirements as well as the need for a free line of sight to GPS satellites. The same

GPS principle can be applied at a smaller scale for robotic applications. If one thinks about a

multi robot scheme, each robot can be considered to do the functions of a GPS satellite while

other robots can work as the receivers. Trilateration is chosen as the method for this research

as we want a system that is a simple as possible while still having the robustness for a good

localization approach, since only the distance is required, the method to get it determines the

sources of noise in the measurements[5]. In this research the method chosen is an AR Tag vision

system. Finally, another advantage over triangulation is that when measuring angles a small

error in orientation translates into big errors in position, specially in noisy environments.
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In [14] three methods to perform trilateration are discussed: quadratic equation, Caley-

Menger determinant and non linear least squares. Exact methods with close form equations

can be found in [15] (Caley-Menger determinant) and in [16] (polynomial algorithm). Similar

researches have been applied in this field in two dimensions using fixed stations. In [17] a

group of submarines is used to trilaterate their mutual positions to navigate more accurately.

In [13] it is introduced how a network of nodes can mutually compute their positions in a

network localization scheme. The work of [14] has in mind fixed stations to create intelligent

spaces for indoor scenarios. In Fig. 2.3 the network approach is depicted, several transmitters

are placed inside a building, the information provided by the transmitters can be read by an

external device capable of measure the distance it has to each station.

p1

p2

p3

FIGURE 2.3: Network localization for indoor environments. A network array
of station can be deployed in indoor environments to localize objects within the
range of the stations measurements.

The methods described are good providing an horizontal position, for height measure-

ments they must be fusion with data from additional sensors, e.g. barometric sensors[16], if the

receiver is to close to the base plane or far away from the formation. The method chosen for

this research is the Caley-Menger determinant, it has a straightforward error analysis and a

close form solution which can be easily implemented in real time applications, also, it does not

require linearization, so the execution is quick in real time systems. This thesis presents a work

which has the novelty of execution for trilateration in indoor scenarios in a three dimensional

space with moving stations taking in account the uncertainties in the system.
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2.2 Errors in localization

The positions of stations with respect of the receiver cause an error in trilateration, which can be

indexed as a Dilution of Precision (DOP)[18], an effect of the apparent increase of the error. DOP

researches have been done previously[19], [20] to address DOP. In [19] a triangulation method is

used and the propagation of errors is introduced as a robot changes its position with respect

of the stations. In [21] it is identified that noisy measurements degrade the trilateration in four

aspects:

1. Uncertainty or no intersection.

2. Ambiguity or mirror solution.

3. Error propagation.

4. Non consistency between different sets of readings.

The item 1 is handled in this research introducing the concept of Solvability Map (SM) as

a measure of the trilateration output, describing a region where the trilateration can be com-

puted, Chapter 7. Item 2 is handled in the trilateration algorithm by defining the formation

direction, it will be explained in Chapter 3. The aspect 3 will be derived in Chapter 6. Item 4 is

handled by redundancy between different sets of robots.

The intersection error has been addressed in [22] reducing no solvable areas by 50% ad-

justing the range measurements knowing the size of the error covariances, this methods needs

to compute all the possible combinations of addition and subtraction of errors. Then, [23] deals

with the flip ambiguity, setting safe conditions to perform trilateration. The work of [24] ana-

lyzes the complexity of trilateration with noise, stating that the problem is intractable. Having

a network of stations, a localization algorithm is proposed to track different objects dealing

with the non consistency in [25]. The way the error propagates from measurements in stations

to the position of the receiver is mathematically defined with covariance matrices. In [26] it is

explained how the covariances in an autonomous vehicle depends on the Jacobians with res-

pect of the state position and the input vector. This is vastly mentioned in a probabilistic way

in [27] and a calculation using multi step prediction is performed in [28].

Since the trilateration solves a localization problem, the uncertainty in positions and meas-

urements has an error that increments with time. The effects of systematic errors by erroneous

coordinates at the stations has also been explained taking in account that the errors in the

stations propagates to the trilateration output[29], [30]. In Fig. 2.4 it is shown how the error prop-

agates in different positions pu, when p1 and p2 have different covariances.
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FIGURE 2.4: Error propagation in 2D. In this case the points p1 and p2 have
covariancesΣ1 and Σ2 which propagate to the unknown position pu. Σu is shown
for several positions pu.

2.3 Multi robot localization

With the advent of new technologies robotics are taken on the field of perception to whole new

levels. Vision algorithms[31], [32] have taken odometry and SLAM to a top notch recognition

levels which are easily translated to the human understanding. SLAM techniques allow for a

robot to build maps and at the same time the robot can know its position inside that map[33].

Laser Ranger Finder (LRF) sensors are used extensively for this application. Research has been

done using UAV to localize several Unmanned Ground Vehicle (UGV)[34]. The UAV is used to

calculate the position of the UGV by means of image processing using a camera looking down,

and by doing so, it updates their positions, reducing the UGV position errors (see Fig. 2.5).

Similar approaches with air ground robot teams are shown in [35] and [36]. All these works are

presented for outdoor environments.

For indoor environments it is presented in [37] a group of robots inside a building that can

mutually calculate their positions using themselves as features. One of them moves while the

others stay static and serve as reference, it stops and another robot starts the same process, see

Fig. 2.6. This way the covariances are reduced improving the localization.



12 Chapter 2. Background and Related Research

OWMR3

OWMR1

OWMR4

OWMR5

OWMR2

OWMR6

UAV

1 2

3
4

5
6

FIGURE 2.5: Aerial localization. An UAV has been used to localize the position
of UGV using vision localization techniques, the UAV update the positions of the
UGV.

Works like [38] and [39] show a group of UAV and UGV working cooperatively to achieve

SLAM by grouping the individual outputs of each robot. In [40] a multi robot scheme is em-

ployed using manifolds where the planar trajectories of different robots are put together to

build a map. Research is moving more and more towards real time applications, and with it, it

is needed to use as many sources of information as possible to define the position of a robot.

As the localization by trilateration depends on the stations positions and distance meas-

urements, the output may not be accurate and an estimator technique can be used to improve

the localization. Researches have shown how to minimize the effect the errors using an Ex-

tended Kalman Filter (EKF)[41] showing the dynamics involved in the problem. Whatever

method is used for estimation the problem statement is the same: calculate a prediction of

the possible state of the process at a time t based on a given input ut, knowing the previous

state xt−1, then, update that prediction with measurements zt to get a estimated state xt
[42]. If

the nonlinearities highly influence the output, methods like the Iterated Kalman Filter (IKF)[43]

or the Particle Filter (PF)[44] can also be implemented as estimators. These methods are compu-

tationally more costly but they are a better option dealing with the nonlinearities in the system.
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OWMR1

OWMR2

OWMR3

OWMR1

OWMR2

OWMR3

FIGURE 2.6: Mutual localization. In a mutual localization approach one robot
moves while it uses other robots as features to localize itself. Then, another robot
can execute the same process. In this way the robots mutually express their posi-
tions and reduce their localization errors.

Lastly, for this project is required that the interaction between the robots is not strongly

centralized. Although the OWMR send the sensed information back to a central computer they

can act on its own, and no robot is in charge of the formation at a very strict level. Rather, the

formation will be defined based on the circumstances of the problem. This approach has been

studied in [45].

2.4 Omnidirectional robots

A position for a mobile robot can be expressed by absolute sensors, and dead reckoning sen-

sors. The former take information from the environment to localize an object and the later take

measurements from “inside" the robot[46], [47]. Knowing this, one of the most powerful prop-

erties of estimators is that they can fusion data from different measurements to have a better

estimate[48]–[51].
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Estimators are vastly used in localization where dead reckoning positioning like odom-

etry, is only good for small distances but have to be updated with absolute sensor readings

as SLAM techniques or GPS devices after a long distance has been traveled. The dynamics

of OWMR are well understood and good controllers based on odometry readings have been

applied[52]–[54]. The OWMR can move in any direction without changing its orientation, their

practicality in real time scenarios depends on how they are build. If the construction is taking

in account rough terrains or not will determine the kind of environments these kind of robots

can be employed.

The main source for localization in an OWMR is its odometry measurement from en-

coders, this measurement has errors intrinsic to the sensors attached to the wheels as well as

systematic and non systematic errors. Systematic errors accumulate constantly and are due to

the parameter uncertainties in the dynamics from the sensor readings to the vehicle displace-

ment. Non systematic errors are unrelated to the robot, like slippage and uneven terrain[55], [56].

The error in odometry has been defined for vehicles showing the increase over time of the posi-

tion error[57], [58]. Examples of calibration for OWMR are proven to improve the localization of

this kind of robots and have been studied before[59], [60] and the slippage in the wheels has also

been addressed in previous researches[61]–[63]. Non systematic errors are better handled using

SLAM techniques as an external feature is used as reference to correct the position.

2.5 Conclusions

This thesis is intended to aid in the localization of objects in indoor environments. To put the

concepts explained in this work to practice requires the understanding of the whole system

integration and the interaction of its different parts. Concepts like SM are defined for the first

time in this thesis and are intended to give more insight on how to handle properties of trilat-

eration for multi robot formations. Also, this project can serve as an explanatory guide for the

mathematical tools explained in its chapters.
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3 Localization by Trilateration

Trilateration is used extensively in GPS applications to find the position of object on the surface

of the Earth. If a GPS receiver has clear view to four GPS satellites it can calculate its position.

FIGURE 3.1: Earth’s GPS application. The GPS system needs the measurements
from 4 satellites to calculate the position of an object on the surface of the Earth.

Mathematically speaking, trilateration consist, in a very simple scheme, in finding where

a group of n spheres intersect. These spheres have center coordinates denoted by pi with a

radius liu. The intersection point will be denoted by pu. Thus, to find the coordinates of pu, the

solution of the system of equations (3.1) is required.

‖pu − pi‖= liu, i ∈ 1, . . . , n (3.1)

Locations at pi are denoted stations while pu is called the receiver. In this work, pi are

OWMR which are able to maintain their locations, and pu is the UAV robot which position is

localized by the proposed system. Graphically, a trilateration graph can be drawn[24], Fig. 3.2.
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p1

p2

p3

pu

Ab

Z

Y X

Mirror solutions

FIGURE 3.2: Trilateration graph. A non unique solution is denoted by the inter-
section of three spheres as two possible solutions for pu. The mirror solution can
be discarded by knowing if pu is above or below to the base plane Ab.

At least four spheres (n = 4) are needed for a unique solution of pu. The intersection of

two spheres is a circle, also shown in Fig. 3.2, and by adding a third sphere only two points are

left as the possible locations for pu.

These two solutions are mirrored by the plane Ab. Ab is denoted as the base plane, formed

by the locations of the stations pi. Now, if the receiver at pu is known to lie above or below Ab,

then, the true solution can be rightly selected.

3.1 Solution to trilateration

The Caley-Menger determinant[15] is used in this thesis as the chosen method to solve the trilat-

eration problem, it has a closed form solution, it has a straight forward implementation. Also

Caley-Menger determinants have geometric properties that allow for a better understanding

of the mathematical concepts behind the equations.
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Using Caley-Menger determinants, for three points p1, p2 and p3, pu is given by:

pu = pub ± k3(v12 × v13) (3.2)

pub is the projection of pu on the base plane Ab and k3 is the height factor, k3 will be

explained in Section 3.2. v12 and v13 are vectors defined as:

v12 = p2 − p1 (3.3)

v13 = p3 − p1 (3.4)

pub, is calculated as:

pub = p1 + k1v12 + k2v13 (3.5)

The constants k1, k2 and k3 are calculated by means of the Caley-Menger1 determinants

(D(·)) as:

k1 = −D(p1,p2,p3;p1,p3,pu)

D(p1,p2,p3)
(3.6)

k2 =
D(p1,p2,p3;p1,p2,pu)

D(p1,p2,p3)
(3.7)

k3 =

√

D(p1,p2,p3,pu)

D(p1,p2,p3)
(3.8)

k1, k2 and k3 set a scaling factor in the directions required to have the position pu correctly

located. The trilateration variables can be seen in Fig. 3.3.

3.2 True solution

The square root in (3.8) implies the mirror solution when using only three positions pi. In [15],

the sign of k3 is not dealt concisely in a mathematical way. On the other hands, k3 is defined as

the height divided by the norm of the vector normal to the base plane.

The term k3(v12 × v13) in (3.2) is the height with direction, and that direction is given by

the unitary normal vector pn given by:

pn =
v12 × v13

‖v12 × v13‖
(3.9)

1In Appendix A the calculation for Caley-Menger determinants D(·) is explained.
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p1

p2

p3

pu

pub

l1u

l3ul2u

Ab

z

y x

FIGURE 3.3: Trilateration variables. The measurements required for trilateration
are shown. Positions pi and distances liu.

If an observer is sitting on the UAV at pu, the OWMR formation at p1, p2 and p3, can be

seen to be arranged in a Clock Wise (CW) or Counter Clock Wise (CCW) fashion. For CCW

formations, k3 is positive ("+") because pu is in the direction of pn, otherwise is negative ("−")

because it is in the opposite direction to pn. In Fig. 3.4 the concept for the sign of k3 is depicted.

p1

p2

p3

pu

pub

CW, k3 (-) CCW, k3 (+)

v12

v13

pn

v13

v12 pn

pu directionpu direction

FIGURE 3.4: k3 sign. The sign of k3 changes due to pn direction which in turns
defines if the formation is in CW or CCW direction.
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Any point on Ab can be used to create an auxiliary vector:

paux = pi + pn =







xaux

yaux

zaux






(3.10)

Then it can be tested if the formation is in CW or CCW rotation, Algorithm 1 depicts this

process, where nerr is a threshold error.

Algorithm 1 Sign of k3.

1: procedure GETK3SIGN(pi,pn)
2: paux ← pi + pn

3: if zi − zaux ≤ nerr then

4: return 1, CCW
5: else

6: return −1, CW
7: end if

8: end procedure

It is expected that the UAV is always above the OWMR formation. There are applications

where that is not always true, e.g. a submarine. In that case the "if" condition changes to:

zi − zaux ≥ nerr (3.11)

3.3 No solution for pu

If the points pi are collinear there is no solution for pu. The points pi are collinear if the Caley-

Menger determinant of the points in the base Ab is zero, that is:

D(p1,p2,p3) = 0→ Collinear (3.12)

This means that the points in Ab cannot be on the same line or the area of Ab will be zero.

If the spheres defined as in Fig. 3.2 do not intersect, there is no solution to the trilateration,

as shown in Fig. 3.5 and Fig. 3.6. Here, two cases are shown when the intersection does not

happen. In the former, the spheres never make contact because they are far apart, and in the

later, one of the spheres is inside the other.
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FIGURE 3.5: No sphere intersection case 1. The spheres do not intersect because
they are far apart and thus, never make contact, the "air" gap between them is
clearly visible.

FIGURE 3.6: No sphere intersection case 2. The spheres do not intersect because
one of them is completely inside the other, which means there is not a single
contact point between them.

Now, mathematically, two spheres with centers at ci and cj , radius ri and Rj , intersect in

a circle with radius aij ≥ 0[64]. For three spheres, n = 3, the intersection is tested as:

pu ∈ ∃a12 ∩ ∃a13 ∩ ∃a23 (3.13)
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where aij is given by:

aij =
1

2dij

√

(−dij + rj −Ri)(−dij − rj +Ri)(−dij + rj +Ri)(dij + rj +Ri), aij ≥ 0 (3.14)

and dij is the distance from center to center:

dij = ‖cj − ci‖ (3.15)

All the distances aij (i ∈ 1, 2, 3, j ∈ 1, 2, 3, i 6= j) must be greater or equal than zero to

have a solution for pu, which means that the square root inside (3.14) has to be positive. For

two spheres located at p1 = [−1.4982,−0.8650, 0]ᵀ and p2 = [0, 1.7300, 0]ᵀ with radius of 3.46

units, the intersection radius aij is 3.118 units, as can be appreciated in Fig. 3.7.

FIGURE 3.7: Sphere intersection radius. Two spheres intersect in a circle with
radius aij. For two spheres located at p1 = [−1.4982,−0.8650, 0]ᵀ and p2 =
[0, 1.7300, 0]ᵀ with radius of 3.46 units, the intersection radius aij is 3.118 units.

3.4 Trilateration function

If more robots are added to the OWMR multi robot formation, then n ≥ 3 and three points

pa, pb and pc have to be selected to perform the trilateration. Thus, a suitable notation will be

required for the trilateration. This notation will be denoted as the function fabc.

fabc = pu = Trilateration(pa,pb,pc, lau, lbu, lcu) (3.16)
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(a) CW formation. 
���� �
 � �

(b) CCW formation.

FIGURE 3.8: fabc numerical simulation 1. Three points pi are arranged in a tri-
angle centered at the origin with the point pu held above the plane Ab. Both CW
and CCW orientations are tested.
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so, the coordinates of pu are:

fabc = pu =







xu

yu

zu






(3.17)

The value of pu does not have to be used for trilateration. The positions pi and distances

liu are obtained from sensors mounted on the OWMR. Also, remember that the intersection

verification has to be done three times, Eq. (3.14).

This method to compute the trilateration allows for a three dimensional calculation of the

point pu, which is in accordance with the objectives of this thesis. Several simulations were

performed to validate the algorithm. Three points are arranged in a triangle centered at the

origin, in the first simulation pu is held above the points pi, the test was performed in CW and

CCW orientations, see Fig. 3.8.

Then a simulation was performed with pu outside the base plane Ab, shown in Fig. 3.9.

The position pu is correctly calculated. 
���� �
 � �
FIGURE 3.9: fabc numerical simulation 2. The position of pu can be correctly
calculated even if it is outside the base plane Ab.
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FIGURE 3.10: fabc numerical simulation 3. Even if the base plane is tilted, the
position pu is correctly computed, validating the three dimensional execution.

Also, the system is tested in a tilted condition, see Fig. 3.10. It can be appreciated that the

solution can be found correctly, validating the three dimensional approach presented in this

work. For this test, the points pi are located at:

pa =







−1.4982
−0.8650
0.2114






(3.18)

pb =







1.4982

−0.8650
−0.8351






(3.19)

pc =







0

1.7300

0.2358






(3.20)

All the tests were performed without adding noise, which mean they are fully solvable

and in Chapter 6 the effects of noisy measurements will be analyzed. Finally, Algorithm 2

summarizes the trilateration process.

If, e.g., only three robots are employed OWMR1, OWMR2 and OWMR3, then a = 1, b = 2

and c = 3.
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Algorithm 2 Trilateration.

1: procedure TRILATERATION(pa,pb,pc,lau,lbu,lcu)
2: if COLLINEAR(pa,pb,pc) then

3: return FAIL

4: end if

5: if INTERSECTION(pa,pb,lau,lbu)< 0 then

6: return FAIL

7: end if

8: if INTERSECTION(pa,pc,lau,lcu)< 0 then

9: return FAIL

10: end if

11: if INTERSECTION(pb,pc,lbu,lcu)< 0 then

12: return FAIL

13: end if

14: vab and vac ← Eq. 3.3 and Eq. 3.4
15: k1, k2 and k3 ← Eq. 3.6, Eq. 3.7 and Eq. 3.8
16: pn ← Eq. 3.9
17: GETK3SIGN(pi,pn)
18: pub ← Eq. 3.5
19: pu ← Eq. 3.2
20: return pu

21: end procedure

3.5 Conclusions

The mathematical tools required to compute the trilateration were explained in this chapter

sections. The geometric aspects of the problem were analyzed. Among the methods available to

solve the problem, the Caley-Menger determinant was chosen for its simplicity and usefulness

in three dimensions. An algorithm to perform the trilateration was developed taking in account

failure scenarios. This algorithm is to be implemented in real time and some basic numerical

tests were executed to validate the good performance in the execution.
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4 Sensed Measurements for

Localization

As stated in Chapter 3, localization by means of trilateration needs as inputs the positions pi

and the distances liu. These inputs are information gathered from sensors mounted on the

robots, and this robots, are employed as the stations in trilateration. The inputs are required

to solve the UAV position pu in Algorithm 2. Each robot must be capable to measure its own

position in world frame coordinates:

pi = [xi, yi, zi]
ᵀ (4.1)

Also it is needed to provide the distances liu to pu:

liu = ‖pu − pi‖ (4.2)

The way pi is calculated has to be independent of the trilateration algorithm. That means

that as long as a robot can provide pi, regardless of the dynamics, any type of robot can be

employed, e.g. the algorithm works the same if using an OWMR, a differential drive vehicle or

a legged humanoid. In this work a formation of OWMR is employed.

The same concept applies for the distances liu, they can be calculated with any method

as long as they provide the lengths between positions pi and pu. It is assumed that liu is

calculated center to center. In this research distances liu are measured using monocular cameras

employing a fiducial system, reducing the complexity that image tracking systems have. Each

OWMR is independent in the sense that it can take commands on its own, but at the same time

is part of a multi robot formation used to perform the Multi Robot Localization (MRL). Next, it

is explained in detail how pi and liu are obtained.
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4.1 Positions pi

The OWMR robots used have holonomic behavior, meaning that they can move in any direction

without restriction, e.g. they do not need to rotate to change direction. Any wheel of the

OWMR has an angular velocity ω. Using the right hand rule, if the wheel rotates to the outside

of the robot along the center of the wheel, then the wheel speed is negative, and positive if the

rotation is to the inside of the robot, see Fig. 4.1.

(-)

(+)

FIGURE 4.1: OWMR wheel speed direction. Taking the right hand rule, if the
wheel rotates to the outside of the robot ω is negative, otherwise is positive.

The angular velocities are read from encoders mounted on the shaft of motors, using a

gear drive with ratio n. From the encoders, the wheel speeds are given in [pulses/s]. A wheel

encoder speed ωenc is related to a wheel tangential velocity vt trough a conversion factor cm,
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which gives the tangential displacement of the wheel in SI units, and is calculated as:

cm = πd/(nCe) (4.3)

where, d is the wheel diameter, n the gear ratio and Ce the encoder resolution. Then, the wheel

tangential displacement vt is given by:

vt = cmωenc (4.4)

Two types of OWMR are used1 (Fig. 4.2) and both types are controlled via speed com-

mands given in the world frame coordinate system or on the robot frame. Speeds in the world

frame are denoted by:

vxyψ = [ẋ, ẏ, ψ̇]ᵀ (4.5)

where ẋ and ẏ are the linear speeds and ψ̇ is the angular speed2.

Speeds in the local frame are:

vnψ = [v, vn, ψ̇]
ᵀ (4.6)

where v is the forward speed in the local x direction of the robot, vn the transversal local speed

in the y direction. ψ̇ is the same in both global and local frames.

Lastly, the tangential speeds are, from (4.4):

v123 = [vt1, vt2, vt3]
ᵀ (4.7)

v123 and vnψ are related by the geometry of the robot, that is:

vnψ = Gv123 =







0 −
√
3/3

√
3/3

2/3 −1/3 −1/3
1/3L 1/3L 1/3L






v123 (4.8)

Then, vxyψ is calculated with a transformation from local to global coordinates:

vxyψ = Bvnψ =







cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1






vnψ (4.9)

1The OWMR were openly named worker and mini worker.
2The OWMR only move in two dimensions
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(a) Worker robot.

(b) Mini worker robot.

FIGURE 4.2: OWMR robots. The robots used as stations in trilateration, they
calculate their positions based on speed commands. The robots in (a) are capable
to perform SLAM while the robots in (b) can only measure their positions from
odometry readings.
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The plant P relates v123 and vxyψ , P can be obtained through the Jacobian.

vxyψ = BGv123 = Pv123 (4.10)

World speeds, local speeds and tangential wheel speeds, vxyψ , vnψ and v123 respectively,

are depicted in Fig. 4.3. ψ̇ is the same in global and local frames.

X

Y

vt3

vt2

vt1

ψ

ẋ

ẏ

v

vn

ψ̇

L

FIGURE 4.3: OWMR speeds. World speeds, local speeds and tangential wheel

speeds, vxyψ, vnψ and v123 respectively, are depicted. ψ̇ is the same in global and
local frames.

A vector pi is defined as the state vector, it has the two dimensional OWMR pose with an

orientation ψ[52]:

pi = [xi, yi, ψi, ]
ᵀ (4.11)
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The control is called ui, the input state, it can be delivered in global or local coordinates:

ui = vxyψ = [ẋi, ẏi, ψ̇i]
ᵀ (4.12)

ui = vnψ = [v, vn, ψ̇i]
ᵀ (4.13)

where (4.12) is expressed in global coordinates and (4.13) in local ones. The wheels are attached

to motors m123, and the motor speeds are read by encoders ωenc123 :

m123 = [m1,m2,m3]
ᵀ (4.14)

ωenc123 = [ωenc1, ωenc2, ωenc3]
ᵀ (4.15)

The control loop in Fig. 4.4 is implemented on the OWMR to get the positions pi. The loop

runs at a frequency of 100 Hz. PGL is the plant in global or local coordinates depending on the

input ui, (4.16) and (4.17) respectively.

PGL = BG (4.16)

PGL = G (4.17)

At each iteration, small errors accumulate over time when reading the encoders ωenc123

and to keep the motors m123 running and the commanded velocity a PID controller is imple-

mented.

ωenc123ui P−1GL PID m123

pi

v123
cm

P

cUMB Eb

FIGURE 4.4: OWMR Control Loop. The control diagram as implemented in the
OWMR is shown. The PID control is used to keep the input ui at the required
value. Also, the OWMR is calibrated for the wheel diameter and base sizes.
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To test the implementation of the motor speed PID controller, one OWMR was com-

manded to move in the y direction at 0.1 [ms−1]. The commanded speed is constant but the

encoder output is noisy and to keep it around the commanded speed the PID controls the ve-

locity of the motors m123. Fig. 4.5 shows the results.

� � � � � �� � � ��� � � � � � � � �
� � � � � �� � � ��� � � � � � � � �� ���� � ! "#$ %�%& ' ( � ) * � +, � 
 (
� � � � � �� � � ��� � � � � � � � -. / 0 � 1 2 3

FIGURE 4.5: OWMR PID. When reading the encoders there is an error around a
mean value and the PID keeps the input ui near this value.

X

Y

w3

L

d

120◦

w2

w1

FIGURE 4.6: OWMR top view. The variables used to calculate the dynamics are
shown, the length arm L, the wheel diameter d and the wheel speeds ωi.



34 Chapter 4. Sensed Measurements for Localization

The OWMR have systematic errors due to the mechanical aspects of the robot. This means

the robot is not symmetrical perfect. In Fig. 4.6 the arm length L and the wheel diameter d are

shown. L and d are not the same in all directions and they can be corrected by calibration.

The correction is done using the UMB benchmark[56]. The calibration fixes the wheel di-

ameters d and the base arm lengthsL and it is intended to be used on differential drive vehicles.

In order to use it on a 3 wheeled OWMR it is proposed in this work to perform the calibration

for each wheel as if it were the right wheel, e.g. for wheel 1, w1 = wR (see Fig. 4.7).

w3

w2

w1 = wRwL

FIGURE 4.7: Wheel 1 UMB setup. The wheels 2 and 3 are taken as the left wheel
to perform the UMB calibration.

The UMB calibration was performed for each wheel following the paths in Fig. 4.8. The

calibration is not accurate if the robot rotates, that is, when ψ is big. For straight paths in the x

and y directions this calibration is enough to get an estimated position pi.

Then, the world speed is, applying the calibration parameters:

ṗi = PcUMBv123 = BGv′123 (4.18)

v′123 = cUMBv123 =
[

v′1, v
′
2, v

′
3

]

ᵀ
(4.19)

cUMB ∈ R
3x3 is the wheel diameter correction diagonal matrix and the wheel shafts are

corrected as:

L′ = LEb (4.20)

where Eb is the UMB wheelbase correction factor.
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FIGURE 4.8: Test paths for UMB calibration. The paths are taken accordingly to
the wheel taken as the right side wheel. The test have to be done three times, each
for each wheel.

The calibration parameters for one of the robots are presented in Table 4.1.

TABLE 4.1: UMB calibration parameters for one robot. The calibration is done
using the UMB benchmark, the values for each parameter are shown.

Parameter Value

cUMB [1.01378, 1.01060, 1.00719]
Eb [1.00056, 0.99883, 0.99605]

Eq. (4.18) used with the control loop in Fig. 4.4 gives an inverted calibration, that is, the

OWMR will not move straight but rather they will give an estimate of the true position, this is

because of limitations on the embedded CPU on board the OWMR. Finally, at each time step δt

pit is given by the dynamics gp.

gp = pit = pi(t−1) + ṗitδt (4.21)
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The process standard deviations were taken from the encoder readings in each wheel com-

pared against the real input, see Fig. 4.9. The odometry readings have an offset when compared

against the reference speed.

D E D F D G D H D I D D I E DJ D K EDD K E L M N N O I
D E D F D G D H D I D D I E DJ D K IJ D K D PD L M N N O EQRSSTU VW QX Y Z [ \ N ] ^ _` N a N ^ N b c N
D E D F D G D H D I D D I E DJ D K IJ D K D PD L M N N O d

] e \ N f g h
FIGURE 4.9: Wheel readings from UMB tests. The OWMR process covariance Rn

is taken from the errors in the encoders.

The errors for one of the wheels is shown in Fig. 4.10, using this information the distri-

bution of the error measurements can be calculated, as an histogram, shown in Fig. 4.11. The

equivalent probability density function of this histogram is shown in red, based on a Gaussian

normal distribution. The fit to the error is good, so the mean and the standard deviation can be

fitted and added to the dynamics in (4.21).
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FIGURE 4.10: Wheel speed error for one wheel. The error as read from one wheel
of an OWMR is shown.
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FIGURE 4.11: Wheel speed error PDF for one wheel. The distribution of the error
size for one wheel of an OWMR is shown. In red, it is shown the equivalent PDF
of this distribution based on a Gaussian normal distribution.
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FIGURE 4.12: Position readings from UMB tests. The coordinates x, y and z are
taken from different sources to calculate the errors in positions.
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FIGURE 4.13: Orientation readings from UMB tests. The values ρ, θ and ψ are
taken from different sources to calculate the errors in orientation.
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The positions, x, y and z is shown in Fig. 4.12. As it can be seen the error increases with

time, but that is expected as the error adds up at each iteration. The orientations φ, θ and φ are

depicted in Fig. 4.13. As it can be seen, since the OWMR move in two directions the errors in

z, θ and ψ can be neglected. The errors related to the measurements x, y and ψ are shown in

Fig. 4.14. Results were compared against an Optitrack camera motion system.
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FIGURE 4.14: Errors from UMB tests. The OWMR measurements covariance Qn

is taken from the errors in the state variables x, y and ψ.

The fit for a Gaussian distribution of the error in x is shown in Fig. 4.15. Due to the

error being incremental, the Gaussian fit is not exact. With all this information, the standard

deviations σnR and σnQ can be obtained, they are:

σnR ≈ [0.0075, 0.0075, 0.007]ᵀ (4.22)

σnQ ≈ [0.095, 0.095, 0.06]ᵀ (4.23)

where σnR and σnQ are related to the covariances Rn and Qn respectively. Finally, a simulation

was performed using an EKF in a circular path to show how Σpi changes within a path, the

results are shown in Fig. 4.16.
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FIGURE 4.15: Gaussian fit for the error in the position in x. The Gaussian fit for
the error in x is shown. Due to the error being incremental, the Gaussian fit is not
exact.   II

Σ   I

FIGURE 4.16: OWMR1 circular path simulation. The covariance in the OWMR
increases as it moves. With SLAM techniques that can be fixed. The OWMR does

not rotate, ψ̇ = 0. Σp1 with 1 σ.
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4.2 SLAM

When the pose pi is taken only from odometry readings, it is good only for small distances. In

the long run, the errors accumulate and also, if the robot drifts, it can lose its position.

The pose can be improved or fixed using SLAM localization techniques. For that the

Worker OWMR are equipped with an LRF to localize themselves within a given map (see

Fig. 4.17).

(a) OWMR with an LRF. (b) Map built with a robot using an LRF.

(c) LRF graphic interface. (d) LRF in a map.

FIGURE 4.17: Worker robot with an LRF. The Worker OWMR are equipped with
an LRF which allows for localization within a map.
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The errors in pi propagate to the position pu. To get this propagation a Kalman filter is

implemented in the OWMR to get a correct estimate of the covariances in pi. Localization with

encoders will be defined as pni and localization with an LRF will be defined as pri .

The position pri is given at a much lower rate than pni , and each time pri is updated it has

to be fused with pni , this can be achieved with an EKF in the update step.

In the prediction step, the new believes are calculated:

µ̄pt = gp(uit,pi(t−1)) (4.24)

Σ̄pt = GptΣ
p
t−1(G

p
t )

ᵀ +R
p
t (4.25)

then, the Kalman gain is given by:

Kp
t = Σ̄pt (C

p
t )

ᵀ
(

Cpt Σ̄
p
t (C

p
t )

ᵀ +Q
p
t

)

ᵀ
(4.26)

and, finally, the update is:

µpt = µ̄pt +Kp
t (z

p
t − Cpt µ̄pt ) (4.27)

Σpt = (I−Kp
t C

p
t )Σ̄

p
t , I ∈ R

3×3 (4.28)

where gp is Eq. (4.21), Σp is the Kalman covariance, Gpt is the Jacobian of (4.21) with respect of

the state, that is:

Gpt =
∂gp(ut,xt−1)

∂xt−1
(4.29)

The process covariance R
p
t is the propagation of the error, calculated as[26], [27]:

R
p
t = GptΣ

p
t−1(G

p
t )

ᵀ + V p
t R

p
t−1(V

p
t )

ᵀ (4.30)

where the initial value of Σp is Rn, and V p
t is the Jacobian of (4.21) with respect of the input:

V p
t =

∂gp(ut,xt−1)

∂ut
(4.31)

In appendix B the derivation of (4.29) and (4.31) can be found.

The measurements are provided from two different sources, odometry and an LRF.

z
p
it =

[

pnit

prit

]

(4.32)
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Fig. 4.18 shows the EKF implementation in the OWMR.

Prediction Update

EKF

pni

pi

OWMR

Encoder

LRF

P
pri

ui

FIGURE 4.18: EKF implementation in the OWMR. The update step in the OWMR
EKF is made up of two measurements.

The matrix Cpt is:

Cp =

[

I

I

]

, I ∈ R
3×3 (4.33)

The measurement covariance at each time step is:

Q
p
t =

[

Qn
t 0

0 Qr
t

]

(4.34)

where Qn
t = Qn is constant and Qr

t is given by the SLAM algorithm implemented[27]. The

update times for pri are much slower than the ones for pni , so the equations have to be adjusted

accordingly if only pni is available.

One of the robots was used with SLAM following a square path, the approach taken was

fusion the data every time the SLAM algorithm updated the position of the OWMR. The results

are presented in Fig. 4.19.
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FIGURE 4.19: OWMR1 circular path simulation. The covariance in the OWMR
increases as it moves. With SLAM techniques that can be fixed. The OWMR does

not rotate, ψ̇ = 0. Σp1 with 1 σ.

4.3 Distances liu

(a) Monocular camera. (b) Mini worker OWMR with camera mounted.

FIGURE 4.20: OWMR as used in the experiments. The mini worker is shown as
used in the experiments. The monocular cameras are located looking upward.
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The distances liu are measured using cameras mounted on the OWMR, they are measured

center to center from the cameras to the UAV. The cameras used are depicted in Fig. 4.20.

(a) Apriltag 1. (b) Apriltag 2.

(c) Apriltag 3. (d) Apriltag 4.

FIGURE 4.21: Apriltags. Different Apriltags are shown. The software can detect
the patterns and based on them calculate the distance from a camera to the tag,
or the object where the tag is mounted.

World coordinates are translated to image pixel positions by:

[

xp

yp

]

=

[

fx 0 cx

0 fy cy

]







xw

yw

zw






(4.35)

By (4.35) it can be seen that the depth is lost in the image, so it is needed a way to cal-

culate it, so the distance can be retrieved. Normally, the three dimensional pose is calculated

solving the PnP problem[7]. In this research we are only interested on the distance form the

image, thus, the fiducial image system Apriltags[65] was chosen for this tasks. This software

can calculate the full pose but we are only interested in the distances provided from it.
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In Fig. 4.21 some examples of Apriltags are shown. The software has an internal library

that allows for the tag identification, and once identified, the distance from the camera to the

tag can be retrieved.

In Fig. 4.22 it is shown where the Apriltag is mounted on the UAV for the experiments,

and also, it can be seen that the range distance is measured center to center, from the camera to

the Apriltag.

FIGURE 4.22: Apriltag mounted in the UAV. Apriltag mounted in the UAV as it
is being used in the experiments. The distance is measured center to center, from
the camera to the Apriltag.

To get better results, the cameras are calibrated using OpenCV[66] with an asymmetrical

circle pattern, see Fig. 4.23. A calibration software detects this pattern and based on how it

truly has to be seen, it calculates the calibration parameters needed to correct an uncalibrated

image. These calibration parameters are passed to the Apriltags software and the calibration is

done automatically.

The error using Apriltags is calculated by comparing the software distance against the real

one, the results are shown in Fig. 4.24. Three runs were performed measuring the distance at

intervals of 0.10 m. The error using this fiducial system is around 0.05 m, good enough for the

purposes of this research.
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FIGURE 4.23: Asymmetric circles pattern. A calibration software detects this pat-
tern and based on how it truly has to be seen calculates the calibration parameters
for a monocular camera.
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FIGURE 4.24: Apriltags error. To calculate the error when using the Apriltags
different distances were measured and compared to a ground truth. Then the
standard deviation was taken.
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4.4 Conclusions

In this chapter it was explained how the measurements required are obtained. The methods

shown are specific to the methodology of this work. As stated before, the measurements are

independent of the localization algorithms, as long as the information required is provided by

the robots any method can be used. Positions pi depend on the robot’s dynamics, through

odometry readings. Usually, a SLAM technique has to be use to update the measurements so

the true position is as real as possible so the robot can perform successfully in the environment.

For the distances liu, in this work, it is used an image processing technique. Other researches

use network approaches with radio transmitters to calculate these distances. The following

chapters will describe how this information is used in the multi localization algorithm.
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5 UAV Localization with a Multi Robot

Formation

The multi robot localization calculates the position of an UAV using a formation of OWMR.

The OWMR are stations in a GPS framework, and the UAV the receiver. The control diagram

is shown in Fig. 5.1.

Vision

Prediction Update

Estimator

Dynamics

Odometry

ut

n
1

xt−1

x̄t

liu

pi

xt

ui

UAV

OWMR

Localization
zt

pu

FIGURE 5.1: Multi Robot Localization (MRL) control. The OWMR formation
calculates the UAV position. It uses a trilateration approach with independent
measurements pi and liu coming from sensors mounted in the OWMR.
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The MRL calculates a measurement zt and uses an estimator to keep the position pu accu-

rate. The variables involved in the algorithm are presented in Table 5.1.

TABLE 5.1: MRL algorithm variables. The variables involved in the MRL algo-
rithm are described.

Variable Description

liu Distance measurements.
pu UAV position, the unknown variable.
pi OWMR position measurements.
ui Input to the OWMR.
ut Input to the UAV.
xt MRL output, estimated position pu.
zt Measurement for MRL, Eq. (3.16) and Algorithm 2.

The trilateration was explained in Chapter 3, the calculations for positions pi and the

distances liu were explained in Chapter 4. In the multi robot approach of this work the number

of OWMR can vary, so the number of OWMR is denoted n. Only three robots are needed

to perform Algorithm 2 and the selection of which robots can compute it should be based

optimality or simple OWMR positions within the formation. Also a redundancy approach

can be taken, having different group of robots calculating the position pu. Depending on the

application one approach may be better than others.

The MRL control block uses an estimator, it is used as the measurements in position and

distances have errors within them. The errors in positions pi and distances liu have covariances

which increase over time. Errors in positions and distances propagate to the UAV position and

it is needed to filter the signal zt to get an accurate solution for pu.

The estimation consist in a prediction and an update steps. In the prediction a process

model g(ut,xt−1) approximates the solution for pu based on the input ut. Generally this proc-

ess model is just the dynamics of the system.

Then, in the update step, the data is fusion with the measurement signal zt to get the true

position pu. The measurement model is defined as h(xt).
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5.1 Process and measurements models

The unknown position is the three dimensional location of an UAV, but the MRL can be used

to track anything, which depending on the situation, can be an UAV, a person inside a building

or simply a marker on the ceiling. So the best approach is to use a velocity model. This velocity

model is defined as:

xt = g(ut,xt−1) + εt = Axt−1 +But + εt, εt = N (0, σR) (5.1)

with an input vector:

u = [ẋ, ẏ, ż]ᵀ (5.2)

and a state vector:

x = [x, y, z, ẋ, ẏ, ż]ᵀ (5.3)

A is the process matrix (5.4) and B is the input matrix (5.5).

A =

[

I 0

0 0

]

(5.4)

B =

[

Idt

I

]

(5.5)

The measurement model is defined as the trilateration function (3.16):

zt = h(xt) + δt = fabc + δt, δt = N (0, σQ) (5.6)

εt and δt are noise vectors, assumed to be multivariate Gaussian distributions with mean

0 and variances σR and σQ, respectively. In equations (5.4) and (5.5), I and 0 are the identity

and null matrix, respectively, in R
3x3.

Two methods for estimation are addressed, an EKF and a PF. Both methods were im-

plemented following [27]. The methods were implemented having in mind that they can be

interchangeable and do not have to interfere with the processing of the MRL algorithm.

While the EKF proves to be more robust to initial conditions the PF have properties that

make it more robust in the presence of non linearities. The Kalman filter is one of the most

used techniques for estimation due to its simplicity but as the problem to solve gets more

complicated other techniques must be used.
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5.2 Extended Kalman filter

The extended Kalman filter is a very powerful tool to estimate the state of a dynamic system.

It is widely used in robotic applications as well as in localization systems. This filter has good

response as long as the linearization at the required state positions represents the non linear

model accurately. On the other hand, the EKF is very robust to initial conditions as it can

adjust the state values to track the measurement signal adequately.

The implementation of the EKF is very straight forward and the computational cost is

very low. The EKF algorithm is presented in Algorithm 3.

Algorithm 3 Extended Kalman filter.

1: procedure EXTENDEDKALMANFILTER(xt−1,Σt−1,ut,zt)
2: x̄t ← g(ut,xt−1)
3: Σ̄t ← GtΣt−1G

ᵀ

t +Rt)
4: Kt ← Σ̄tH

ᵀ

t (HtΣ̄tH
ᵀ

t +Qt)
−1

5: xt ← x̄t +Kt(zt − h(x̄t))
6: Σt ← (I−KtHt)Σ̄t

7: return xt, Σt

8: end procedure

Rt is the process covariance and Qt is the measurement covariance. They are related to

σR and σQ respectively. Steps 1 and 2 are the prediction and steps 4, 5 and 6 are the update to

the state. Qt is constant but Rt propagates from positions pi and distances liu to pu. It will be

explained in Chapter 6.

The EKF uses the process and measurements Jacobians, Gt and Ht. Gt is the Jacobian of g

given by:

Gt = g′(ut,xt−1) =
∂g(ut,xt−1)

∂xt−1
= A (5.7)

Ht is the Jacobian of h defined by:

Ht = h′(xt−1) =
∂h(xt−1)

∂xt−1
=

[

I 0

]

(5.8)

The EKF in essence linearize the dynamics at every point. So if the system is highly non

linear it is very prompt to fail because it depends on the accuracy of model g to make a proper

linearization for Gt.
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5.3 Particle filter

The PF deals with the linearization concern of the EKF by consensus. Several particles are taken

around the true value requested based on the propagation of the error in the process, then, the

particles that are closer to the measurement are employed to calculated the estimated signal.

The down side of the PF is that it is very prone to fail if the initial conditions are not good

enough. Algorithm 4 shows the particle filter (PF).

Algorithm 4 Particle filter.

1: procedure PARTICLEFILTER(Xt−1,ut,zt)
2: R′t ← (R−1

t +Hᵀ

t Q
−1
t Ht)

−1

3: Q′t ← (Qt +HtRtH
ᵀ

t )
4: for m = 1 to M do

5: x̄
[m]
t ← g(ut,x

[m]
t−1)

6: z̄
[m]
t ← h(x̄

[m]
t−1)

7: ω
[m]
t ← N (z̄

[m]
t |zt,Q

′

t)
8: end for

9: ωt ← ωt/
∑M

m=1 ω
[m]
t

10: for m = 1 to M do

11: draw i with probability∝ ω
[i]
t

12: add x̄
[i]
t to Xt

13: end for

14: xt ← MEAN(Xt)
15: Mnew ← SIZE(Xt)
16: for m =Mnew + 1 to M do

17: x
[m]
t ← xt + ε′t, ε

′

t = N (0,R′t)
18: end for

19: return xt,Xt

20: end procedure

For this filter, a set of M points, called particles are created, defined as:

X = x[m],m ∈ {1, . . . ,M} (5.9)

Each of these particles is located within a threshold of the position pu, see Fig. 5.2. Usually,

this threshold is represented by the process covariance Rt. So, at each time step, each particle

is:

x
[m]
t = xt + εt, εt = N (0,Rt) (5.10)
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FIGURE 5.2: Particles dispersed around a position xt. Each particles is located
within a threshold of the position pu. Usually, this threshold is represented by
the process covariance Rt.

All the particles are propagated through the dynamics of g and the measurements h to

have a set of particle measurements Z .

Xt = g(ut,Xt−1) (5.11)

Zt = h(Xt) (5.12)

The true measurement zt is given a weight factor based on the measurements covariance

Qt, and then, the closest particles to this measurement are taken to calculate the true position

pu using for example, the mean value.

pu = MEAN(Xt) (5.13)

The PF algorithm was slightly modified from the one in [27]. For the algorithm to work it

is needed to know how the error propagates from measurements to the process. In step 2 and 3

optimal process and measurements covariances (R′t and Q′t) are calculated based on an optimal

approach using the Jacobian Ht
[44]. Doing that inside the filter allows for interchangeability

between the EKF and the PF algorithms in the implementation.

Steps 5 to 7 are the prediction. Step 5 and 6 are the propagation of the state through

the model, Eq. (5.11) and (5.12), step 7 is the probability of the measurement which is then

normalized in step 9.
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FIGURE 5.3: EKF and PF comparison chart. Both estimators consist in a predic-
tion and an update steps but the way they perform the operation affect which
estimator is better for certain circumstances.
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The update consists of a resampling and particles addition. Steps 11 and 12 are the resam-

pling which keeps only the particles close enough to the measurement zt. After resampling, the

number of particles decreases and it is needed to add more particles to Xt. The new particles

are generated around the mean of Xt, calculated in step 14. New particles are created in step 17

by adding a normal Gaussian random vector ε′t to xt using the optimal process covariance R′t,

Eq. (5.13).

In Fig. 5.3 a comparison between the flow of data in the EKF and the PF is carried on.Both

estimators consist in a prediction and an update steps but the way they perform the operation

affect which estimator is better for certain circumstances.

5.4 Conclusions

The UAV position is meant to be found by a group of ground robots, so, in this chapter it

was explained how the localization will be performed is such scenarios for the MRL approach.

The mathematical tools required for the correct deployment of the MRL algorithm were de-

scribed. Two estimation techniques were studied, an EKF and a PF, and both techniques can

be used with the localization method. The estimators require a process and measurements

model, which were described in this chapter. Defining the process model as a velocity model

allows for the MRL to be employed in localizing any object and how the trilateration model

was translated into the measurements model was also defined.
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6 Uncertainty Propagation and

Accuracy Analysis

In network environments the trilateration is performed between static stations and moving re-

ceivers, so the error in trilateration is attributed solely to the measurements liu. In the case

of moving stations the error in the positions pi cannot be neglected because there is an error

that accumulates over time. Errors in positions pi and distances liu propagate to pu, so the

localization needs an estimation method like an EKF to properly calculate the position pu
[15].

The localization accuracy can be changed by modifying the formation of OWMR and the un-

certainty propagation can provide a reference for designing and controlling the formation of

OWMR for some requested accuracy properties of the UAV.

6.1 Dilution of precision

4x

4x

DOP

FIGURE 6.1: Dilution of precision (DOP) for different configurations. The robots
are denoted by dots and the error size is denoted by the width of the rings. On
the left, the intersection region is small, depicted in gray, because all the robots
are equidistant to the intersection. On the right side, as the solution moves and
the configuration changes, the uncertainty region increases.
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In trilateration with noisy measurements the output suffers from dilution of precision

(DOP)[18] as the geometry of the problem changes. In Fig. 6.1 this concept is depicted for the

two dimensional case. On the left side an intersection region is shown for all the points having

the same distance to the unknown. On the right side it can be appreciated that if the distances

liu change the uncertainty in the true position increases.

Taken this concept to the three dimensional case is evident that the dilution also happens.

In Fig. 6.2 the OWMR are located below the UAV at equidistant distances. The positions pi and

distances liu have errors that make the solution lie within an intersection region, depicted as a

particle distribution of possible solution for pu.

FIGURE 6.2: DOP in 3D case 1. The OWMR uncertainty is denoted as two di-
mensional Gaussian distributions and the range measurements uncertainty are
depicted as linear Gaussian distributions. The intersection region is shown in
three dimensions as a particle distribution. The particle distribution is calculated
with a Montecarlo approach.
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As the positions pi and distances liu change, the possible solutions for pu dilute, changing

the intersection region, in Fig. 6.3 the dilution is shown when the UAV moves away from the

formation. The errors on the horizontal plane are small compared to the errors in the z direction

but that can be mitigated using sensor fusion techniques.

FIGURE 6.3: DOP in 3D case 2. If pu moves away from the formation, the intersec-
tion region dilutes as the positions pi and distances liu change. The z direction is
the more affected by the error propagation.

In Fig. 6.2 and Fig. 6.3 the particle distribution is taken with a Montecarlo methodology

but it can be calculated by means of the Jacobian of the trilateration function.

6.2 Uncertainty propagation

Measurements errors propagate to a measurement covariance Qt
[25], [26], [30]. The UAV position

pu depends on measurements coming from six independent sources, three OWMR positions

pi and three distances liu, with covariance matrices Σpi and Σl, respectively.

Qt = HztQΣH
ᵀ

zt (6.1)

where QΣ is:

QΣ =













Σp1 0 0 0

0 Σp2 0 0

0 0 Σp3 0

0 0 0 Σl













(6.2)
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Σpi, i ∈ 1, 2, 3 are the position covariances of the corresponding OWMRi, which are taken from

the EKF implemented on the OWMR:

Σpi =







σ2xxi σ2xyi σ2xzi
σ2yxi σ2yyi σ2yzi
σ2zxi σ2zyi σ2zzi






, i ∈ 1, 2, 3 (6.3)

Σl is the distance measurements covariance and 0 is the null matrix in R
3×3:

Σl =







Σl1 0 0

0 Σl2 0

0 0 Σl3






=







σ2l1 0 0

0 σ2l2 0

0 0 σ2l3






(6.4)

Hzt ∈ R
3×12 is the Jacobian of fabc with respect of the measurements qz :

Hzt =
∂h(xt)

∂qz
=
∂fabc
∂qz

=
∂pu
∂qz

=
[

∂pu

∂p1

∂pu

∂p2

∂pu

∂p3

∂pu

∂l

]

(6.5)

qz =
[

p
ᵀ

1 p
ᵀ

2 p
ᵀ

3 l1u l2u l3u

]

ᵀ

=













p1

p2

p3

l













(6.6)

It is assumed that the positions pi are independent of each other, otherwise the off diago-

nal elements in (6.2) are not zero. Now, to solve (6.5), it can be expanded as:

Hzt =
∂p1

∂qz
+
∂k1v12

∂qz
+
∂k2v13

∂qz
± ∂k3v12 × v13

∂qz

=
∂p1

∂qz
+ k1

∂v12

∂qz
+ v12

∂k1
∂qz

+ k2
∂v13

∂qz

+ v13
∂k2
∂qz

± k3[v12]x
∂v13

∂qz
∓ k3[v13]x

∂v12

∂qz
± (v12 × v13)

∂k3
∂qz

(6.7)

where [·]x is the skew symmetric matrix defining the cross product, a×b = [a]xb. The signs in

(6.7) are taken accordingly to the sign of k3 back in section 3.2. In Appendix C the derivation

for the partials of Hzt is explained.
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(a) Qt near the center of formation.

(b) Qt away from formation.

FIGURE 6.4: Qt at different positions. Three OWMR are positioned at the ver-
texes of an equilateral triangle of three meters centered at the origin. As the
position pu changes the measurements liu change, and also, the errors asso-
ciated with the position pi make the matrix Qt to change due to the geom-
etry in the problem. Σp1 |= [0.08, 0.02, 0]ᵀ@75◦, Σp2 |= [0.06, 0.06, 0]ᵀ@120◦,
Σp3 |= [0.08, 0.06, 0]ᵀ@30◦ and Σl |= [0.025, 0.045, 0.02]ᵀ.



62 Chapter 6. Uncertainty Propagation and Accuracy Analysis

A numerical simulation was executed to verify Qt changes. Three OWMR are positioned

at the vertexes of an equilateral triangle of three meters centered at the origin. The UAV moves

around the formation, Σpi and Σl were given constant random values, the results are presented

in Fig. 6.4. Σp1 |= [0.08, 0.02, 0]ᵀ rotated 75 degrees, Σp2 |= [0.06, 0.06, 0]ᵀ rotated 120 degrees,

Σp3 |= [0.08, 0.06, 0]ᵀ rotated 30 degrees and Σl |= [0.025, 0.045, 0.02]ᵀ 1. The UAV was hold at

2 meters and moved in the x and y direction. The covariances of pi are represented by error

ellipses, the covariances liu by Gaussian distributions and Qt by error ellipsoids2. As the UAV

moves away from the formation Qt increases.

The DOP can be used to measure the error in Qt. It is computed as a unit less index for

the error size of Qt
[19]. In trilateration DOP is given as:

DOP = log
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(6.8)

DOP increases exponentially so a log is used in (6.8). As DOP does not take in account

the off diagonal elements in (6.1) is not suitable as a measurement of the error in Qt. Thus, the

error can be calculated as the Spherical Error Probable (SEP), defined as trace of the Cholesky

factorization of Qt:

SEP = 0.59 tr(Cholesky(Qt)) (6.9)

In order to include the off diagonal elements of Qt it is proposed to calculate the SEP as:

SEP = 0.59
√

detQt (6.10)

A plot for DOP and the SEP is shown in Fig. 6.5. The results are given in logarithmic scale.

Fig. 6.5(b) clearly shows the effects of the propagation of the error from OWMR positions and

distance measurements to the position pu. SEP has a more accurate description of the error in

trilateration than DOP. DOP takes in account that the stations are fixed in a given position. If

they were to move, then there is an error associated with the dynamics of the motion. The plots

are not interchangeable, e.g. a value of 1 in DOP is not the same as a value of 1 in SEP.

1A covariance matrix Q is rotated as RQRᵀ where R is a rotation matrix
2The covariances are drawn using an eigen value decomposition, where the eigen vectors denote the axis of the

ellipses and ellipsoids, and the eigen values denote how much it stretches in a certain direction.
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�

(a) Dilution of precision. 	
�

(b) Spherical error probable.

FIGURE 6.5: DOP and SEP. SEP has a more accurate description of the error in
trilateration than DOP because it takes in account the off diagonal elements in
the covariance. The plots are not interchangeable, e.g. a value of 1 in DOP
is not the same as a value of 1 in SEP. Σp1 = [0.082, 0.022, 0]ᵀ@75◦, Σp2 =
[0.062, 0.062, 0]ᵀ@120◦, Σp3 = [0.082, 0.062, 0]ᵀ@30◦ and Σl = [0.025, 0.045, 0.02]ᵀ.
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6.3 Conclusions

In this chapter is was explained how the error propagates from the OWMR and range meas-

urements to the UAV position. It was explained how the error dilutes as the geometry in the

problem changes. The mathematical steps to derive of the error propagation was executed and

demonstrated with numerical simulations. Finally it was defined how to measure the prop-

agation error, with two measurements studied: DOP and SEP. It was noticed that the SEP is

better to measure a covariance than the DOP as it takes in account all the values in the covar-

iance matrix of the propagation. The error propagation is very important for mobile robots as

the uncertainty changes with the motion. It cannot be neglected that if a formation of OWMR

move, their uncertainty will have an effect on robots or elements that use this information.
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7 Solvability due to Uncertainty in

Measurements

In real scenarios the measurements pi and liu are noisy. As stated in Section 3.3, when the

UAV is close to the base plane or away from the OWMR formation it may happen that the

intersection of the spheres does not happen and so, the trilateration can not be computed1. In

Chapter 3, Eq. (3.14) states that three distances aij must exist, if one of them is less than zero,

that configuration is considered unsolvable, mathematically:

SMabc(pu) = pu∃ ⇐⇒ aij ∈ R
+
0 , {i, j} ∈ {a, b, c}, i 6= j (7.1)

where ∃ is the exist operator and R
+
0 is the set of all real numbers greater or equal than zero

and SMabc(pu) is the probability that the point pu is solvable for fabc. For any position pu, the

solvability is the percentage for a solution in trilateration.

FIGURE 7.1: pu solution in a noiseless environment. Without noise the solution
to pu is exactly at the intersection of three spheres, given the known positions p1,
p2 and p3 and their corresponding range measurements liu.

1Mathematically, (3.16) has a solution but physically it does not.
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This percentage can be calculated by means of the Probability Density Function (PDF) and

the Cumulative Density Function (CDF) for the UAV position pu. If three points, p1, p2 and p3

exist in a noiseless environment, the solution pu lies at the intersection of three spheres with

radiuses liu, as depicted in Fig. 7.1. On the other hand, if the measurements for positions and

ranges are disturbed by noise the solution cannot be found. Fig. 7.2 shows some examples

of cases where the intersection is affected by noise, notice that the errors are exaggerated so

the concept can be clearly illustrated. Green means contact with two spheres. Yellow means

contact with just one sphere. Red means no contact at all.

(a) The real solution "translates" with noise. (b) Two of the spheres have no contact.

(c) One sphere is completely inside another. (d) No contact at all.

FIGURE 7.2: Sphere intersection affected by noise. Some examples of cases where
the intersection is affected by noise. Notice that the errors are exaggerated so the
concept can be clearly illustrated. Green means contact with two spheres. Yellow
means contact with just one sphere. Red means no contact at all.
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In Fig. 7.3 an example where noise does not affect the outcome is explained. In the upper

part the measurements are noiseless, so the intersection lies exactly at pu, in the green spot. In

the lower part, even do the measurements are corrupted by noise there is still an intersection,

and thus, a solution for the localization.

pu

p2p1

pu

p2p1

pu

p2p1

FIGURE 7.3: Intersection explained, case A. In the upper part the measurements
are noiseless and a solution lies at pu, in the green spot. In the lower part, even
do the measurements are corrupted by noise there is an intersection.

For a different configuration, a solution may not be feasible, as shown in Fig. 7.4.

pu

p2p1

pu

p2p1

pu

p2p1

FIGURE 7.4: Intersection explained, case B. For a different noiseless configura-
tion, there is a solution, see upper graph, green spot. With noise, the meas-
urements change and a solution may not be feasible, as shown in the lower left
graph.
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7.1 Solvability using Montecarlo approximation

A Montecarlo approach can be used to calculate the PDF and the CDF for pu, e.g. if niter

iterations are taken with noisy measurements, SMabc(pu) can be computed as:

SMabc(pu) =

∑niter

n=1 pu∃ ⇐⇒ aij + ε ∈ R
+
0

niter
, i ∈ {a, b, c}, j ∈ {a, b, c}, i 6= j, ε N (0, σ) (7.2)

where ε is noise represented by a normal Gaussian distribution with zero mean and variance

σ. For this method to work and give accurate results, niter has to be as high as a thousand

iterations.

In Fig. 7.5 the PDF and CDF of (7.2) are shown for a OWMR formation centered at the

origin with the UAV above them at 1.25 meters. The standards deviation in positions pi and

distances liu is 0.1 m and 0.1 m, respectively. As it can be seen, in this case SMabc(pu) = 1 at all

times, which means that the solvability is guaranteed for this configuration.

If pu where to move along one of the axis of the base plane Ab then the solvability de-

creases, as shown in Fig. 7.6. In this case SMabc(pu) = 0.74 which means that there is a 26%

probability that the trilateration cannot be solved.

Fig. 7.5 and 7.6 show cases for a single pu location. As the UAV can be anywhere on the

environment it is better to represent the solvability as a map SM instead of a single point. In

this case, the SM will represent the probabilities at all positions pu. Mathematically:

SM∀abc(pu) = SMabc(pu)∀{xu, yu, zu} ∈ R (7.3)

where ∀ is the for all operator.

A SM was built for a OWMR formation centered at the origin with standards deviation

in positions pi and distances liu of 0.1 m and 0.1 m, respectively. The UAV is positioned at

all possible positions spanning an area of 20 by 20 meters at different heights. The results are

shown in Fig. 7.7. In Fig. 7.8 an SM is plotted in three dimensions. The stations are given by

their 2D distributions and the shape of the region covered by the SM can be appreciated.
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(a) Trilateration problem used for Montecarlo case A.�
�

(b) PDF and CDF.

FIGURE 7.5: SMabc(pu) case A. The PDF and CDF are shown for the formation
depicted using the Montecarlo method. The CDF is 1, which means that the prob-
lem is solvable at all times, and thus, a solution for pu is guaranteed.
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(a) Trilateration problem used for Montecarlo case B.�
�

(b) PDF and CDF.

FIGURE 7.6: SMabc(pu) case B. The PDF and CDF are shown for the formation
depicted using the Montecarlo method. Now the solvability drops to 0.74, mean-
ing that there is 26% of probability that the problem does not have a solution for
pu in this configuration.
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(c) Solvability increases with height.

FIGURE 7.7: Solvability maps SMabc(∀pu). The SM is shown for an area of 20 by
20 meters at heights of 0.5, 1.25 and 2 meters. The random nature of the Monte-
carlo method can be perceived. As the height increases so does the solvability.
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FIGURE 7.8: 3D view of an SM. The stations are given by their 2D distributions
and the shape of the region covered by the SM can be appreciated.

As it can be seen, zones along the direction of the axis of the OWMR formation have higher

probability for failure, and that is expected since two positions pi can easily form a collinear

formation with pu along these axes. The solvability is also proportional to the height, the higher

the bigger probability for a solution to trilateration. Heights less than one meter are not used

for long times in real scenarios but they are mention as the solvability can be clearly noticed.

7.2 Solvability using derived probability distribution

The Montecarlo method is not favorable for real time applications, a SM is computationally

costly to calculate. Using probability theory [67], [68] a closed form solution will be calculated

based on the derived probability of the multivariate PDF. A derived probability distribution

maps the PDF of a Random Variable (r.v.) to a function using that r.v.. A quick review of

derived probability distributions can be found on Appendix D.

The expression inside the square root of (3.14) has to be positive to guarantee an intersec-

tion between two spheres i and j. A function g(x) can be defined as a probability function to

represent the intersection of two spheres:

g(r,R, d) = g(x) = (−d+ r −R)(−d− r +R)(−d+ r +R)(d+ r +R), g(x) ∈ R
+
0 (7.4)
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For the purpose of the SM, the real variables r, R and d will be defined as values taken

from independent r.v. r, R and d, that is, they are related using a probability as:

P(r = r) (7.5)

P(R = R) (7.6)

P(d = d) (7.7)

The triplet of variables in (3.14) form a random vector x:

x = [r,R, d]ᵀ (7.8)

The following notation will come in useful:

g(r,R, d)ij = g(ri, Rj , dij) = g(x)ij (7.9)

The PDF of r, R and d is a probability function given by a multivariate normal Gaussian

distribution:

fX(r,R, d) = fX(x) = det(2πΣ)−
1
2 exp(−1

2
(x− µ)ᵀΣ−1(x− µ)) (7.10)

where µ is the mean and Σ the covariance:

µ =
[

µr µR µd

]

ᵀ

(7.11)

Σ =







σ2r 0 0

0 σ2R 0

0 0 σ2d






(7.12)

The derived probability will map the distributions of r, R and d to the distribution of

g(r,R, d), expressed as:

fX(g(x)) =

4
∑

n=1

fX(xn)

|det(J(xn))|
, r ≥ R (7.13)
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where xn are the four roots of g(x) given by:

xn =
[

rn R d
]

ᵀ

, n = 1, 2, 3, 4 (7.14)
[

r1,2

r3,4

]

=

[

±((4R2d2 − g(x)) 1
2 +R2 + d2)

1
2

±(R2 − (4R2d2 − g(x)) 1
2 + d2)

1
2

]

(7.15)

and J(x) is the Jacobian of g(x). As g(x) is a single function, the denominator of (7.13) is

calculated using (7.16) and (7.17) setting R and d as auxiliary variables:

J(x) =







∂g(x)
∂r

∂g(x)
∂R

∂g(x)
∂d

0 1 0

0 0 1






(7.16)

det(J(x)) = 4R2r + 4d2r − 4r3 (7.17)

Finally, if r < R, then r and R have to be swapped to cover all the range of the r.v..

The probability of the intersection of two spheres is given by the CDF of (7.13). This CDF

cannot be expressed in closed form because it requires to solve to a triple integral which does

not have an exact solution. This integral can be inferred numerically as the cumulative sum

of the PDF. First a PDF must be built, and a single loop with 50 iteration is enough to get an

acceptable result for the CDF.

FX(g(x)) = 1−
50
∑

n=1

fX(g(x)) (7.18)

Notice that the CDF has to be inverted to get the real value for the solvability. A non

inverted probability is P(x ≤ x). The process has to be calculated three times for any three

OWMR a, b and c. So the probability at each position pu is calculated using (7.18) as (7.19).

That means that if any two spheres do not intersect, then the trilateration does not have a

solution.

SMabc(pu) = argmin







FX(g(x)ab)

FX(g(x)ac)

FX(g(x)bc)






(7.19)

The process to calculate a sphere intersection is presented in Algorithm 5. Here, nPDF is

the number of points in the PDF. The vectors r, R and d are monotonic vectors centered at a

value x of the form x− 3σx to x+ 3σx.
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Algorithm 5 Probability sphere intersection.

1: procedure PROBABILITYSPHEREINTERSECTION(r,R,d)
2: if r < R then

3: SWAP(r,R)
4: end if

5: MAKEVECTOR(r,R,d)
6: g(r,R,d)← (7.4)
7: for i = 1,nPDF do

8: fX ← (7.13)
9: end for

10: g0 ← FIND(g(x) ≥ 0)
11: for i = 1,g0 do

12: FX ← FX + fX
13: end for

14: return 1− FX

15: end procedure

The Montecarlo method requires a large number of iterations to give a good result. Two

a Montecarlo runs are shown with 50 and 1000 iterations. As it can be seen, a large number of

iterations is required to converge to an acceptable result.

Fig. 7.9 uses the Montecarlo method with 50 iterations, it is clearly visible that the regions

did not reach a final value. B C D E F G H D H I J F I K L M N O P Q R S

T Q R S
UV WX

Y Z [ Y \ [ \ Z [Y Z [Y \[\
Z [ Q ] S

[̂ [_ [` [a [
FIGURE 7.9: Solvability map using Montecarlo with 50 iterations 50 iterations are
not enough to get a good result for the solvability

A good approximation is achieved with 1000 iterations (Fig. 7.10), although it is very time

consuming.

Finally, in Fig. 7.11 the SM using the closed form formula is shown. The closed form

formula gives an exact result and is computationally fast compared to the Montecarlo method.
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FIGURE 7.10: Solvability map using Montecarlo with 1000 iterations. 1000 itera-
tions need a big amount of time to get the SM done.b c d e f g h d h i j f i k l Z m ^ \ n o p

q n o pY Z [ Y \ [ \ Z [Y Z [Y \[
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FIGURE 7.11: Solvability map using closed form formula. The closed form for-
mula gives an exact result and is computationally faster compared to the Monte-
carlo method.

In Fig. 7.11, a point px is shown, for this point its PDF and CDF are shown in Fig. 7.12. It

can be seen that the closed formula gives a better answer than the Montecarlo method.
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FIGURE 7.12: PDF and CDF of g(x) at a point px. The PDF and CDF are shown
for a point within an SM to show the differences between the Montecarlo and the
closed formula methods.

In Table 7.1 a comparison of the execution times between the Montecarlo method and the

closed form formula is shown. The times presented are the mean of an area of 51 by 51 pu

different locations, that is, the mean of 2601 positions pu. It can be seen that the closed form

formula is extremely fast compared to the Montecarlo method.

TABLE 7.1: Solvability execution time comparison. Comparison of execution
times between the Montecarlo method and the closed form formula.

Method Montecarlo Montecarlo Closed form
Time [s] 50 iterations 1000 iterations formula

Run 1 0.0013 0.0237 2.0659e-5
Run 2 0.0011 0.0273 2.1434e-5
Run 3 0.0011 0.0250 2.6701e-5
Run 4 0.0012 0.0261 2.1640e-5
Run 5 0.0011 0.0243 2.2138e-5

Mean 0.00116 0.02528 2.25144e-5

2601 positions pu

The solvable areas depend on the shape of the OWMR formation, so if the formation

changes, so does the solvability. The formation can be changed accordingly to the requirements

of the UAV or the environment the robots are located, e.g. a corridor. Two slim formations were

chosen, see Fig. 7.13 and Fig. 7.14, as in indoor scenarios corridors will are likely to exist in great

part of the environment.

The multi robot configuration can be exploited when more than three OWMR are avail-

able. For that it is needed to take combinations of three robots (℘(Cn3 )) at a time to perform

the trilateration. The solvable zones of each combination can be superimposed and then areas



78 Chapter 7. Solvability due to Uncertainty in Measurementsb c d e f g h d h i j f i k l Z m ^ \ n o p

q n o pY Z [ Y \ [ \ Z [Y Z [Y \[
\Z [ n r p

[̂ [_ [` [a [s ts us v
FIGURE 7.13: Solvability map for “Vertical" formation. As the indoor scenario
changes the formation can be changed accordingly to the requirements of the
environment. Slim formations are useful in e.g. corridors.b c d e f g h d h i j f i k l Z m ^ \ n o p
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FIGURE 7.14: Solvability map for slim “Horizontal" formation. As the indoor
scenario changes the formation can be changed accordingly to the requirements
of the environment. Slim formations are useful in e.g. corridors.

without a solution using a selection of robots may have a solution with a different selection.

Each combination has a SM, and these maps can be added to increase the solvability in a certain

area. SM maps are added as:

SMabc(∀pu) = argmax(∀SMabc(∀pu)), {a, b, c} ∈ ℘(Cn3 ) (7.20)
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In (7.19) the minimum value is taken because if the intersection of two spheres is not viable

then the trilateration cannot be computed. On the other hand, in (7.20), the maximum value is

taken because it is only needed that one formation fabc can compute the position pu.

In Fig. 7.15 two mirrored formations are added. A map SM123(∀pu) is added to the forma-

tion with map SM134(∀pu).� � � � � � � � � � � � � �   ¡ ¢ £ ¤ ¥ ¦ §
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FIGURE 7.15: Addition of two SM maps. Two mirrored formations are added, its
SM maps complement each other increasing the solvability and guaranteeing the
localization execution.
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A third formation SM235(∀pu) can be added to the result in Fig. 7.15, it is shown in

Fig. 7.16. Just by adding a third formation the solvability greatly increases. With this it is

confirmed that by incrementing the number of robots used for localization better results are to

be expected.� � � � � � � � � � � � � �   ¡ ¢ £ ¤ ¥ ¦ §
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FIGURE 7.16: Addition of three SM maps. As many combination of OWMR can
be added as long as the localization algorithm can be executed for the group of
robots chosen.
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Since an UAV moves in a three dimensional space the solvability can be represented in a

three dimensional space. If a threshold SMthres is set, a SM plane can be extracted. Setting the

threshold at SMthres = 97% in Fig. 7.17(a) gives the resulting plot drawn in Fig. 7.17(b). As a

result, the SM plane only has two values, solvable and not solvable.

(a) SM plot with threshold plane at 97%. (b) Threshold plane.

FIGURE 7.17: Solvability at 1.25 meters with SMthres = 97%. The solvability only
has two values, 0 and 1 but this allows for a three dimensional SM.

In Fig. 7.18(a) the same approach is carried on but on a map at three meters to show the

differences at different heights. The SM plane is presented in Fig. 7.18(b).

(a) SM plot with threshold plane at 97%. (b) Threshold plane.

FIGURE 7.18: Solvability at 3 meters with SMthres = 97%. At different heights,
the same threshold gives a different solvability.
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Stacking several SM planes allows for a three dimensional SM construction. This is pre-

sented in Fig. 7.19. where it is shown a three dimensional SM plot from 0 to 5 meters with

SMthres = 97%.

(a) SM stacked, 97%.

Solvability 97%
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(b) Upper view.
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(c) 3D view

FIGURE 7.19: Solvability maps in 3D. If 2D maps are stacked a three dimensional
SM can be built. The solvable areas are everywhere above the “mountains".
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In a dynamic system the errors may change over time, if this happens the SM also change.

If the errors in positions pi change the SM do not change too much, see Fig. 7.20.

Ñ Ò Ó Ñ Ô Ó Ô Ò ÓÑ Ò ÓÓÒ Ó ÓÔ
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(a) Solvability with σp = 0.01 m.

Ñ Ò Ó Ñ Ô Ó Ô Ò ÓÑ Ò ÓÓÒ Ó ÓÔ Ù Ú Û Ü Ý Þ ß Û ß à á â ã ä

Õ Ö × Øá Ö × Ø
(b) Solvability with σp = 0.3 m.

FIGURE 7.20: SM with different variances in positions pi. The errors in positions
do not affect the solvability as it can be appreciated.
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On the other hand, if the errors in distance measurements change, then the solvability is

greatly affected. This is presented in Fig. 7.21 and Fig. 7.22.Ù Ú Û Ü Ý Þ ß Û ß à á â ã ä

Õ Ö × ØÑ Ò Ó Ñ Ô Ó Ô Ò ÓÑ Ò ÓÑ ÔÓ
ÔÒ Ó Ö × Ø

Òåæ
(a) 2D view Solvability with σl = 0.01 m.
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(b) 3D view Solvability with σl = 0.01 m.

FIGURE 7.21: SM with a small variance in distance measurements σl = 0.01.
The solvability is greatly increased. The non solvable areas are now at a lower
altitude.
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Ù Ú Û Ü Ý Þ ß Û ß à á â ã ä

Õ Ö × ØÑ Ò Ó Ñ Ô Ó Ô Ò ÓÑ Ò ÓÑ ÔÓ
ÔÒ Ó Ö × Ø

Ó Òåæç
(a) 2D view Solvability with σl = 0.3 m.

(b) 3D view Solvability with σl = 0.3 m.

FIGURE 7.22: SM with a big variance in distance measurements σl = 0.3. The
solvability is reduced as only a small region can be calculated.
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7.3 Conclusions

The concept of solvability map SM was introduced in the presented chapter. It was shown

that the regions were the trilateration problem is computable can be known. This regions lay

along the axis of the triangle formed by the base plane Ab. The solvability can be used to

select the shape of the multi robot formation or to design paths for the tracked object. The SM

was introduced first as a conceptual method using the Montecarlo approach and then, using a

derived probability function is was shown that it can be calculated with a closed form formula

with faster and more accurate results, which can be applied in real time systems.
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8 Formation Selection and Control

For multi robot formations, it is needed to define how robots will behave within the group

and which robots will perform certain actions. In this chapter it is explained how the multi

robot formation behaves under the localization algorithm proposed. First, knowing that the

trilateration algorithm needs three points working as stations it will be defined how this triad

of robots is chosen, then a simple formation control is explained to drive the robots motion.

8.1 Triad representation for function fabc

f123

f234

f235

f345

OWMR1

OWMR4

OWMR3

OWMR2

OWMR5

UAV1

UAV2

FIGURE 8.1: Example of different selections of formation fabc. Different forma-
tion selection are shown when having five robots available to perform the local-
ization, any triad fabc can perform the trilateration. At position 1 f123 is selected
but at position 2 f345 is a better option.
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In Chapter 3, the function fabc was defined to represent the trilateration, Eq. (3.16), this is

useful because it allows to put all the possible combinations in a simple notation, where fabc is

any combination of three robots taken out of the formation, a triad, represented as:

fabc ∈ ℘(Cn3 ), n = number of robots (8.1)

where n is the number of OWMR available in the multi robot formation, equal or larger than

three. As only three robots are required to perform the trilateration, if a formation has, e.g. 5

robots, then n = 5 and there are 10 different formations that can be selected with three robots

at a time, C5
3 = 10. To illustrate this concept, in Fig. 8.1 some of the formations taken of a

group of 10 OWMR are depicted. In the real system, the selection may vary depending on the

requirements of the task commanded to the multi robot formation.

8.2 Robot triad selection

The triad of robots used to perform the trilateration can be chosen based on the shortest dis-

tances liu, so the robots a, b and c can be chosen by the a property from the UAV to the OWMR.

An algorithm algorithm to select three robots based on the distances measured from all OWMR

is a feasible concept that be implemented on the formation.

{a, b, c} ∈ argmin(liu), i ∈ {0, . . . , n} (8.2)

On the other hand, DOP and SM can also be used to define characteristics within the multi

robot formation. As an example of an algorithm representing this approach it is proposed to

use the DOP as a measure of the proximity of the OWMR to the UAV. As shown in Chapter 6,

the DOP changes with the distance from the center of the formation. So, as long as the DOP is

less than a threshold value DOPthres, the formation triad will be the same and it will change

to the next formation suited for trilateration with a smaller DOP value when the threshold is

reached, see Fig. 8.2 for the diagram illustrating this concept.
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Start

End

DOP < DOP
thres

Compute DOP for

selected formation

Select next

formation

All

tested?

Choose formation

with smallest DOP

Yes

No

Yes

No

Select formation

FIGURE 8.2: Triad selection based on DOP. The selection of robots to perform the
trilateration is based on the DOP value of the formation fabc. The formation with
the smallest DOP value is used in the localization algorithm.
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8.3 Formation control

Take Fig. 8.3, the SM can be used to drive the OWMR formation. On the right, the UAV at pu is

in a good position inside the SM. On the left the UAV enters a non solvable area, and thus, the

formation has to move to keep the UAV inside a solvable area. A control uC is being applied

to the OWMR formation, following the UAV motion. A numerical simulation is performed in

Section 9.3. è é ê ë ì í î ê î ï ð ì ï ñ ò ó ô õ ö ÷ ø ù
ú ÷ ø ù

ûü ýþ
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(a) Solvability at position A.
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(b) Solvability at position B.

FIGURE 8.3: SM for formation control. The SM can be used to drive the OWMR
formation. On the right, the UAV at pu is in a good position inside the SM. On the
left the UAV enters a non solvable area, and thus, the formation has to move to
keep the UAV inside a solvable area. A control uC is being applied to the OWMR
formation, following the UAV motion.

For the formation control it is needed to define where robots lie within the formation. A

simple method is to define the center coordinates among a group of robots. The center of the

OWMR formation pC is defined as the mean of the OWMR positions1.

pC =

[

x̄i

ȳi

]

(8.3)

Each OWMR its able to compute its own position pi and the position pC is sent to all of

them through the network. Also, each robot can handle input commands ui and formation

commands uC . In Fig. 8.4, the OWMR control scheme is depicted including the formation

control.

1If the circumcenter is taken and the number of robot increases it is not convenient.
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ui

Localization

Formation

Control

UAVuu pu

OWMR

Solvability
uC

pC

ψC 1

n

FIGURE 8.4: OWMR control scheme with formation control. The SM is used to
calculate a formation control signal uC , this signal is a vector that can be sum up
to the motion of the OWMR.

The control uC is given by:

uC =







ux

uy

uω






=







ux

uy

ωC






(8.4)

where ux is the formation velocity in the x direction, uy the formation velocity in the y direction

and uω is the angular velocity around pC . For a formation with only three elements, the for-

mation has an orientation ψC in the direction perpendicular to the vector v12 = p2 − p1. These

concepts are depicted in Fig. 8.5.

The signal uC commands the OWMR formation, and then each OWMR calculate how they

are moving within the formation. In a time step δt, ωC produces a rotation RC around pC .

RC =

[

cos(ωCδt) − sin(ωCδt)

sin(ωCδt) cos(ωCδt)

]

(8.5)
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OWMR1

OWMR3

OWMR2v12

ψC

uω

pC

FIGURE 8.5: Formation variables. A formation fabc centered at pC has an orien-
tation ψC . It can rotate around pC with an angular velocity uω and the forward
motion is in the direction of perpendicular to v12.

Each OWMR calculates its velocity by estimating how much they are moving with respect

of the formation center center pC . The translation pt each robot experience is:

p′t = pi − pC (8.6)

p′r = p′t (8.7)

p′i = p′r + pC (8.8)

where the orientations ψi is ignored. The velocity around pC is:

vωi =
p′i − pi

δt
(8.9)

If lCu is greater than a threshold the formation move towards pu with a linear velocity

equal to:

vxyi = kxylCunCu (8.10)
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where kxy is a constant and nCu is the unitary vector from pC to pu. The total velocity each

robot OWMRi has to apply due to the control uC is:

vCi = vωi + vxyi (8.11)

The SM, Chapter 7, can be used to determine if the formation of OWMR needs to move

or rotate to maintain a good solvability percentage while the formation is moving. This gives

a mobile localization platform an advantage over static network localization indoor environ-

ments.

The UAV angle ψu is the angle of the formation to the UAV, defined as the angle of the

vector vCu = pu−pC . The UAV enters within a threshold into the unsolvable area and an error

angle can be calculated:

ψe = ψu − ψC (8.12)

where ψe can be used to send a velocity command to the formation and the distance lCu keeps

the formation close enough to the UAV. The errorψe causes the formation to rotate with angular

velocity ωC .

8.4 Conclusions

This chapter covered some properties for the OWMR formation when executing the multi robot

localization (MLR) algorithm and they will be used in the following chapters to test it. The

notation for the triad of robots was defined as the selection of three OWMR used to perform

the localization. A simple algorithm for triad selection based on the DOP value was presented.

A formation control scheme was defined using the SM as the measurement for a control input

to the formation of OWMR. This control delivers a signal uC that the OWMR can use to move

within the formation.
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9 Numerical Simulations

In this section the multi robot localization algorithm will be tested with numerical simula-

tions. The objective is to validate the theory is employed as expected. The simulations were

performed in Matlab[69] using as estimators an EKF and a PF as described in Chapter 5. Two

simulation are performed to show the results of triad selection, for this simulations it is pro-

posed to use a formation control based on the DOP as explained in Section 8.2. Then, one more

simulation is performed to show the control input uC with the solvability range adjustment

method of Section 8.3.

9.1 Linear path with formation selection

If several robots are used in the multi robot formation, they can be arranged to cover a larger

area, and considering this fact if the UAV moves through a large area maybe the OWMR cannot

keep with the velocity of the drone, but many of them can cover the flying area. If five robots

are available, the different formations fabc that can be used are listed in Table 9.1. Assigning a

number to the formation will be helpful in this experiment.

TABLE 9.1: Possible formations with five robots. All the possible formations hav-
ing five robots are shown ℘(C5

3
).

Formation# 1 2 3 4 5 6 7 8 9 10

Formation f123 f124 f125 f134 f135 f145 f234 f235 f245 f345

To begin with, the first simulation shows the UAV passing through an static formation of

five OWMR.
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The problem setup is shown in Fig. 9.1. The five robots are located at:

p1 = [−4.4947,−3.4600, 0]ᵀ (9.1)

p2 = [0, 3.4600, 0]ᵀ (9.2)

p3 = [7.4911,−2.5950, 0]ᵀ (9.3)

p4 = [14.9822, 1.7300, 0]ᵀ (9.4)

p5 = [22.4734,−5.1900, 0]ᵀ (9.5)

The motion path is in the x direction and the initial formation to be used for localization

is f123. The base plane Ab is located at the camera centers since the distances are taken center

to center from these cameras to the UAV position. In this test the OWMR are static.

UAV motion path

All OMWR are static

OMWR1

OMWR2

OMWR3

OMWR4
OMWR5

Initial formation

FIGURE 9.1: Linear path simulation setup. The motion path is in the x direction
and the initial formation to be used for localization is f123. The base plane Ab is
located at the camera centers since the distances are taken center to center from
these cameras to the UAV position. In this test the OWMR are static.

When the robot is near formation f123 one would expect the UAV to use that formation,

when it approaches f234 the formation is required to change, and the same concept applies for

f345. In Fig. 9.2 it is depicted positions for pu where different formations fabc are expected to be

selected.
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(a) Formation selection, case f123.

(b) Formation selection, case f234.

(c) Formation selection, case f345.

FIGURE 9.2: Formation fabc selection at different positions pu. The formation
selected fabc needs to change accordingly to the UAV position.
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The solution to the simulation is shown in Fig. 9.3, the UAV moves in a straight path in

the x direction at 1 m/s. As the UAV moves through the formation, the selection fabc changes.

The time at which these changes happen are depicted by gray walls and the formation changed

due to a change in the the DOP value based on the algorithm of Section 8.2. The DOP threshold

was set at 31.

FIGURE 9.3: Linear path simulation results. Several OWMR can be arranged to
cover a large area, then, if the UAV passes through them, a different triad can be
selected to perform the localization.

Five robots are used so the possible combinations are the same as the ones presented in

Section 8.1. For this simulation the formations were listed as {1, 7, 10, 2, 4, 3, 8, 9, 6, 5}, so the

first available formation is f123, the second f234 and so on. Results are shown in Fig. 9.4, the

selection selected is correct according to the path taken by the UAV.

In this simulated environment the EKF performs better than the PF, but later it will be

seen in Chapter 10 that the PF is more robust in real time applications in the presence of non

linearities. The errors in the EKF are within 0.1 m (Fig. 9.5).

1A good value for the DOP has to be tested for the requirements.
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FIGURE 9.4: Linear path simulation formation selection. The triad selected in
the multi robot formation is picked accordingly to the DOP value sensed by the
OWMR. The number of the formation selected is accordingly to Table 9.1.
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FIGURE 9.5: Linear path simulation errors. The EKF estimator has a smoother
response than the PF estimator. The errors in the EKF are within 0.1 m.
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9.2 Circular path with moving formation selection

The second simulation consists in the UAV moving in a circular motion around the multi robot

formation of OWMR as shown in Fig. 9.6. The UAV will replicate this motion three times.

UAV motion path

FIGURE 9.6: Circular path simulation setup 1. The UAV is moving in a circular
motion around the multi robot formation of OWMR. This motion will be repli-
cated three times.

Then, at the same time, the OWMR formation will move in the x direction. The motion

for all the robots is depicted in Fig. 9.7.

UAV motion path

OMWR move in the x direction

Initial formation

FIGURE 9.7: Circular path simulation setup 2. At the same time that the UAV
is circling the OWMR formation, the formation will move in the x direction as
shown.
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The resulting motion is shown in Fig. 9.8 for a test using an EKF and a PF estimators. For

this test the formations were listed as {4, 6, 3, 1}, see Table 9.1.

N O N P N Q N R N
S TNTN OPQ U V W XY V W XZ[ \]

^ _^ `^ a^ b^ cd e fg f
FIGURE 9.8: Circular path simulation results. The UAV moves around an OWMR
formation while the formation is moving forward. The selected formation fabc
changes accordingly to the UAV position.

The correct formation is selected along the path taken by the robots, see Fig 9.9. The triad

selected in the multi robot formation is picked accordingly to the DOP value sensed by the

OWMR. Since the UAV moves around the OWMR the formation selected is repeated each time

the UAV makes a turns round the multi robot formation.

The errors are shown in Fig 9.10. The EKF shows a smaller error than the PF. This happens

because the environment is simulated but in real time scenarios implemented on actual robots,

the non linearities affect the behavior of the filters, so it will be shown that the particle filter is

more robust to nonlinearities.
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FIGURE 9.9: Circular path simulation formation selection. The triad selected in
the multi robot formation is picked accordingly to the DOP value sensed by the
OWMR. Since the UAV moves around the OWMR the formation selected is re-
peated each time the UAV makes a turns round the multi robot formation.
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FIGURE 9.10: Circular path simulation errors. The UAV moves around an
OWMR formation while the formation is moving forward. The errors are ac-
ceptable and as it can be seen the EKF performs better than the particle filter.
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9.3 Formation control simulation with solvability range adjustment

In this test it is used a solvability range adjustment, in which the solvability is used to drive the

orientation of the OWMR formation. A numerical simulation is executed simulating a OWMR

formation moving in a corridor and turning. In Fig. 9.11 the problem is depicted. The formation

moves in the y direction and when it moves to the x direction the formation has to rotate. Since

the robots are OWMR they do not need to turn but using an SM a control signal uC can be used

to make the formation turn.

p1

p2

p3

Robots follow this path

FIGURE 9.11: Solvability range adjustment test path. Test path used for the sim-
ulation of the solvability range adjustment control. The UAV moves along a cor-
ridor and then it turns. Since the robots are OWMR they do not need to turn but
using an SM a control signal uC can be used to make the formation turn.

Fig. 9.12 shows three positions A, B and C along the expected path the OWMR formation

is following. The positions A, B and C denote the initial position, a position where the control

input takes place and the final position, respectively.

The distance l12 has a ratio 1.5 : 1 to the distances l13 and l23, this allows for a solvable

region in front of the formation movement. In Fig. 9.13 the initial SM at positionA is presented.

The OWMR formation rotates at point B to keep the UAV in front of it, see Fig. 9.14. The

control uC is being applied because the UAV enters an area with less solvability, sending a

control signal uC and making the formation to turn, following the UAV motion.
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FIGURE 9.12: OWMR paths for solvability range adjustment. How each OWMR
moves during the test for solvability range adjustment control test is shown. The
positions A, B and C denote the initial position, a position where the control
input takes place and the final position, respectively.� � � � � � � � � � � � � � � � � � � � � �
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FIGURE 9.13: SM at position A. Initial SM at the beginning of the solvability
range adjustment control test. A solvable region lies in front of the formation
movement.

At point C it is noticed that the formation is slightly rotated, that is because the OWMR

need to track pu even do the direction of motion is not on the same orientation. The SM in C is

shown in Fig. 9.15.

The resulting control input for the solvability range adjustment consist on a linear compo-

nent and a angular component. The control each robot applies is different as they do not move
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FIGURE 9.14: SM at position B. The control uC is being applied because the UAV
enters an area with less solvability, sending a control signal uC and making the
formation to turn, following the UAV motion.� � � � � � � � � � � � � � � � � � � � � �

� � � �
��  ¡

§ ¨ � £¤¥�
§̈̄ � ¦ �

£� £¥ £§ £¨ £© ª© «© ¬© ­© ®
ψ

®
FIGURE 9.15: SM at position C. Final SM at the end of the solvability range
control test. The formation is slightly rotated, that is because the OWMR need to
track pu even do the direction of motion is not on the same orientation.

in the same manner within the formation. The control input is shown in Fig. 9.16.

Setting a control mode for linear, angular or a combination a both, it is possible to see

how the control is being applied in each phase of the motion. For this test, the control mode is

shown for the times when the controller kicks in (Fig. 9.17), each robot applies the control as

needed according to their positions within the formation.
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FIGURE 9.16: uC applied by the OWMR formation. The control each robot ap-
plies is different as they do not move in the same manner within the formation.
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FIGURE 9.17: Solvability range adjustment simulation control mode. The control
uC has a linear and angular modes, these modes can be used alone or combined.
The control mode is shown for the times when the controller kicks in.
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9.4 Conclusions

In this chapter three simulations were performed to validate the algorithms presented in pre-

vious chapters. It was shown that the localization algorithm proposed is a viable option and

be used to compute the UAV position in three dimensions. Also a multi robot environment

was used to define how a different triad of robots can be used to perform the trilateration more

adequately. Two simulation were performed to present the concepts of triad selection. A simu-

lation was performed to present how the SM can be used to drive a control signal for the multi

robot formation, and change the orientation of the OWMR formation to better calculate the

UAV position.
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10 Real Time Localization Experiments

In this section the concepts presented in this work are implemented in a real time system using

robots. The OWMR calculate their position pi as explained in Section 4.1 and using the cameras

mounted on them the distances liu are obtained, Section 4.3. Each OWMR can move indepen-

dent from the others, they have an Odroid[70] CPU on board that processes all the sensed infor-

mation required for the localization. The sensed signals, pi and liu, are transmitted via WiFi to

a central computer where the multi localization algorithm calculates the position of the UAV.

The data transmission is done using the middleware robotics operating system ROS[71], which

is used extensively by the robotics community. The OWMR send data at a 100 Hz, the camera

distance readings are sent at 5 to 7 Hz and the multi robot localization algorithm is run at a 100

Hz. Finally, an OptiTrack Motion Camera System[72] is used as the ground truth to validate the

algorithms and the implementation.

p1

p2

p3

pu

l12

l23

l13

FIGURE 10.1: Robot ID assignation for real time testing. Each robot is assigned a
position pi which also the ID to identify it.
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For the real time tests a group of three OWMR is used. These robots move together in a

triangular formation in a predetermined pattern and the UAV moves above them. The OWMR

execute the localization algorithm using the trilateration as defined in Chapter 5. The robots

are freely named OWMR1, OWMR2 and OWMR3 for the tests, with respective coordinates are

pi. The distances liu are taken from cameras mounted vertically on the OWMR. The OWMR

do not rotate on their axis so the distances lij between them are taken from the camera lenses.

The plane Ab has a vertical offset that has to be taken in account when taking the calculated

UAV position pu. In Fig. 10.1 and Fig. 10.2 the variables for the real time testings are shown.

l2ul1u

l3u

Ab

FIGURE 10.2: Camera distances and base plane in a real time environment. The
camera distances liu and the base plane Ab are also defined in for test. The range
measurements are taken from the camera lenses to the base of the UAV.

10.1 System initialization

The robots need to know their initial positions, they can be measured directly in the x and y

directions. On the other hand, the formation is triangular, and the law of cosines can be used to

get the initial positions pi knowing the distances the robots have to each other. The distances

between the robots are measured as l12, l13, and l23. Then, OWMR1 is positioned at the origin:

p1 = [0, 0, 0]ᵀ (10.1)
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Following, OWMR2 is located in the x axis next to OWMR1:

p2 = [l12, 0, 0]
ᵀ (10.2)

Finally for OWMR3 the law of cosines is applied, so:

p3 = [x3, y3, 0]
ᵀ (10.3)

where1:

x3 = l13 cos θ1_23 (10.4)

y3 = −l13 sin θ1_23 (10.5)

cos θ1_23 = (l212 + l213 − l223)/(2l12l13) (10.6)

As noticed, the reference frame is initialized with a right hand system pointing up. The

initialization problem is depicted in Fig. 10.3.

p1 p2

p3

θ1_23

l12

l23l13

X

Y

FIGURE 10.3: Reference frame setup. The reference frame is initialized using
the law of cosines, which is convenient to obtain the initial coordinates pi from
measurements lij .

1The notation θi_jk is used.
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The process covariance Rt is related to the process standard deviation and it is set at:

σR = [0.05, 0.05, 0.05, 0.05, 0.05, 0.05]ᵀ (10.7)

The measurement covariance Qt, is the error propagation from measurements, explained

in Chapter 6. For the test performed the distances were set at l12 = 0.98 m, l13 = 0.92 m and

l23 = 0.95 m. The velocity of the OWMR is 0.1 m/s.

10.2 Circular path test

For the first test the robot formation moves in a circular path with radius of 1 m while the

UAV is help above the formation, as shown in Fig. 10.4. The multi robot formation moves and

calculates the position pu of the UAV based on the measurements pi and liu.

Motion path

UAV

OWMR1

OWMR2
OWMR3

FIGURE 10.4: Real time circular path test. The multi robot formation moves in a
circular path, then it calculates the position pu of the UAV based on the measure-
ments pi and liu.

The positions x, y and the orientation ψ are depicted in Fig. 10.5.
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FIGURE 10.5: Positions in the circular path test. The positions calculated by the
mobile OWMR formation matches the ground truth positions.
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The path followed by the OWMR is shown in Fig. 10.6. The covariances of p2 are visible.

The OWMR have errors in the motion and that is why they do not return exactly to their initial

positions.

� 	 
 � �
 
 � �
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� �  !
"# $%

& '& (& )* � + ,
Σ- . /

FIGURE 10.6: Circular path followed by the OWMR. The covariances of p2 are
visible. The OWMR have errors in the motion and that is why they do not return
exactly to their initial positions.

The positions calculated by the mobile OWMR formation matches the ground truth po-

sitions of the Optitrack system and the errors shown in Fig. 10.7 validate the accuracy of the

system. As expected the errors are bigger in the z direction. Both estimators, EKF and PF, can

track the UAV effectively. The PF is very sensitive to initial conditions. The EKF is not affected

so much by the initial conditions as the algorithm can follow the sensed signal zt in a better

way at the beginning of the test. Even do the EKF has a smoother response it can be seen that

the PF responds better to non linearities, as can be seen around second 30. In the z direction

the PF outperforms the EKF.
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FIGURE 10.7: Positions errors in the circular path test. The errors validate the
multi robot localization algorithm proposed. As expected the errors are bigger in
the z direction.



116 Chapter 10. Real Time Localization Experiments

10.3 Square swipe test

In this test, the multi robot formation swipes a square area of 2 by 2 meters. Again, the UAV

is help above the formation, see Fig. 10.8. The position pu of the UAV is calculated using the

multi robot localization algorithm.

Motion path

UAV

OWMR

FIGURE 10.8: Real time square path test. The multi robot formation swipes a
squared area as it calculates the position pu of the UAV based on the measure-
ments pi and liu.

Fig. 10.9 shows the results for positions x and y and orientationψ. At this point the OWMR

do not perform SLAM, so their covariances increase until it is impossible for the estimators to

keep tracking on the UAV. On the other hand, as opposed to the simulations performed in

Chapter 9 the PF outperforms the EKF as it is more robust to the uncertainty, giving that the

initial conditions are met.
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FIGURE 10.9: Positions in the square path test. The OWMR swipe a square area,
due to the increments in the error covariance the OWMR end up losing tracking
of the UAV.
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The path followed by OWMR3 is depicted in Fig. 10.10. It is seen that OWMR3 thinks it

is moving correctly but in reality it is not. The ground truth path, in red, shows how the robot

deviates due to errors.
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FIGURE 10.10: Path followed by the OWMR. The ground truth path, in red,
shows how OWMR3 deviates due to errors.

The errors in positions are shown in Fig. 10.11. The multi robot localization algorithm

works. Tracking is maintained as long as three minutes without improving the uncertainty in

the OWMR. In the tracked regions, the errors are below ±25 centimeters. The EKF shows a

smoother response but the PF is more robust tracking the sensed signal in all directions.
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FIGURE 10.11: Positions errors in the square path test. The OWMR lose tracking
of the UAV as the errors increment, the PF estimator is more robust to the EKF.
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10.4 Real time solvability

The closed form formula for solvability, Eq. (7.19), allows for the calculation of SM in real time.

The real time testing of Section 10.2 was used to calculate the SM in real time. In Fig. 10.12

and 10.13 the results are presented. The size of the map calculated defines the speed of the

calculation.

p1

p2

p3

pu

FIGURE 10.12: Real time calculation of solvability maps (SM) 1. Experiment re-
sult for an SM in a circular path motion with a triangular OWMR formation. Dark
areas have higher solvability.

SM are calculated in real time, and although there is a small delay in the calculation, it all

depends on the CPU capabilities and the size of the map required. Even do, it is fast enough to

detect non solvable areas and take the pertinent actions.
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p1
p2

p3

pu

FIGURE 10.13: Real time calculation of solvability maps (SM) 2. Experiment re-
sult for an SM in a circular path motion with a triangular OWMR formation. Dark
areas have higher solvability.

10.5 Conclusions

The concepts of this thesis were taken from theory into a real time application using real robots,

in a multi robot environment. It was demonstrated that only the measurements from positions

pi and range measurements liu are required to perform the multi robot three dimensional lo-

calization of the UAV in real time. All the algorithms were validated and the localization was

compared against a ground truth provided by an Optitrack Motion Camera System. By using

other kind of robots, e.g., legged or all terrain vehicles this localization approach can be used

in zones of difficult access for humans, and this can be of great aid to the UAV performance.
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11 Conclusions

This work presented a three dimensional multi robot localization of an UAV in real time by a

mobile multi robot platform consisting of a group of OWMR. The system was conceptualized

as a tool for indoor environments where localization techniques still find it difficult to localize

object due to occlusion to GPS readings or the unfamiliarity of unexplored environments like

disaster areas. Also, taken into account the fact that sensor devices mounted on an aerial robots

diminish the power capabilities of flying devices, this localization approach can be of great aid

for an UAV performance. The problem was envisioned as a platform that does not depend on

a previous setup to work, it is "ready to go", and thus, useful on disaster scenarios.

The basics of the problem where revised and derived. Trilateration was chosen as the

mathematical method to solve the problem, allowing any kind of robot to be used with the sys-

tem, regarding the kinematics involved in the robot motion. As long as the robot can measure

the requirements for the problem, positions pi and distances liu, it can be employed and the

orientation is not an issue from this approach. With this in mind the selection of the type of

robot depends entire on the situation. This method can be applied successfully in three dimen-

sions for indoor scenarios and it can be implemented in a mobile multi robot formation. The

robots chosen as platform for this task were OWMR because their dynamics simplify many of

the tasks and they are convenient for research purposes.

The propagation of errors was derived from positions pi and distances liu to the covari-

ance of the position pu of the UAV, being these sources independent measurements. As the er-

rors can be represented by Gaussian noise and there are tools that permit to calculate the effects

of this disturbances in the final measurement. The apparent increase of the error was explained

as the DOP. The propagation was built by means of the covariances in the measurements us-

ing the dynamic model of the localization algorithm. How this traduces from concepts, to the

mathematical requirements to calculate the solution was explained. The covariance in pu, Qt,

can be measured using metrics as the DOP or SEP, being the later more accurate as it takes in

account all the elements in the matrix defining the error in Qt. This error can be used to select

robots within a formation and that was shown in numerical simulated noisy environments.
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The rate of failure of trilateration was defined as a map, called Solvability Map, or SM.

This map is can be useful to select formation shapes or the direction of motion. As a first proce-

dure it was opted to use a Montecarlo execution, but it was proven that a faster, more accurate

and efficient method can be calculated using probability theory by means of the derived prob-

ability function of the intersections of two spheres. The solvability analysis was carried on

for different formation shapes and different number of robots, showing that if the number of

robots increases so does the area were the localization problem is feasible. It was shown that

the regions were the trilateration problem is computable can be known. This regions lay along

the axis of the triangle formed by the base plane Ab. The solvability can be used to select the

shape of the multi robot formation or to design paths for the tracked object.

The robotic mobile platform presented is capable to calculate the position of any exter-

nal object, not only an UAV and the results are intended to aid in the localization of objects

in indoor environments. To put the concepts explained in this work to practice requires the

understanding of the whole system integration and the interaction of its different parts. Con-

cepts like SM are defined for the first time in this thesis and are intended to give more insight

on how to handle properties of trilateration for multi robot formations. Also, this project can

serve as an explanatory guide for the mathematical tools explained in its chapters. This system

is flexible as different estimation techniques can be easily implemented if the goal of the mis-

sion requires it. Here an EKF and a PF were studied and their differences compared. All the

tools required to solve the problem were developed keeping in mind that the system had to be

reliable and feasible with the technologies currently available, but as technology improves this

methodology with also improve giving better results.

The theory was validated with simulations and real time experiments. The simulations

paved the road to understand the requirements for the real time implementation of the multi

robot localization system. It was shown how a multi robot formation can handle data transmis-

sions in a multi robot environment and it was stated that robots need to be independent but at

the same time they have to work together to achieve a common goal. The achievements of this

thesis landed in two journals and one conference papers, showing the interest of the robotics

community in this research and the abilities of the author to carry on a scientific investigation.

All the concepts where studied from previous researches to novel concepts deployed in this

thesis, from theoretical concepts that can be found on books related to this subject to the real

time validation.
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With the aid of new achievements in SLAM and sensing devices this system can be incor-

porated to many robotic fields, like perception and slam, to improve the results for localization

problems. In the future, a multi robot localization mobile platform can be employed for surveil-

lance and data analysis in zones of difficult access or with little opportunity to use extra sensors

in UAV devices. As interaction between robots inside a formation were defined and taken into

account, this work is also the base for future researches with multi robot formations.
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A Caley-Menger Determinants

Having two sets of points [p1, . . . ,pn] and [q1, . . . ,qn], its Caley-Menger bi-determinant is:

D(p1, . . . ,pn;q1, . . . ,qn) = 2
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(A.1)

If p and q are the same sequence, then:

D(p1, . . . ,pn;p1, . . . ,pn) = D(p1, . . . ,pn) (A.2)

A Caley-Menger determinant has some useful geometric meanings for the distance d, area

A and volume V :

D(p1,p2) = d(p1,p2)
2 (A.3)

D(p1,p2,p3) = 4A2 (A.4)

D(p1,p2,p3,p4) = 36V 2 (A.5)

In trilateration the following relation is very useful:

D(pi,pu) = l2iu (A.6)

In [15] some factorizations for D(·) can be found.
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The following notation will be used to represent the Caley-Menger determinants:

D(pa,pb) = Dab (A.7)

D(pa,pb;pa,pc) = Dab;ac (A.8)

In order to solve Eq. 3.6 and Eq. 3.7, the Caley-Menger determinant of different sequences

are needed, but following Eq. A.1 it can be noticed that the elements of the determinants are

represented by distances, so:

D123;134 = −1
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B Jacobians of gp

Gpt is the Jacobian of (4.21) with respect of the state:

Gpt =
∂gp(ut,xt−1)

∂xt−1
=







1 0 Gpxδt

0 1 Gpyδt

0 0 1






(B.1)

where δt is the time step, Gpx is:

Gpx = (v′3(b1 cos(ψ)−
√
3/3(b1 + 2b2) sin(ψ))

+ v′2(b1 cos(ψ) +
√
3/3(b1 + 2b3) sin(ψ))

− v′1((b2 + b3) cos(ψ) +
√
3/3(b2 − b3) sin(ψ)))/(b1 + b2 + b3) (B.2)

and Gpy is:

Gpy = (v′3(b1 sin(ψ) +
√
3/3(b1 + 2b2) cos(ψ))

+ v′2(b1 sin(ψ)−
√
3/3(b1 + 2b3) cos(ψ))

− v′1((b2 + b3) sin(ψ) −
√
3/3(b2 − b3) cos(ψ)))/(b1 + b2 + b3) (B.3)

V p
t is the Jacobian of (4.21) with respect of the input:

V p
t =

∂gp(ut,xt−1)

∂ut
=

B′

b1 + b2 + b3
(
[

G′1 G′2 G′3

]

+ δt

[

G′ G′ G′
]

)δt (B.4)

where B′ is:

B′ =







cos(ψ′) − sin(ψ′) 0

sin(ψ′) cos(ψ′) 0

0 0 1






(B.5)
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with ψ′ given by:

ψ′ = ψ +
enc1cmcUMB1 + enc2cmcUMB2 + enc3cmcUMB3

b1 + b2 + b3
δt (B.6)

G′1, G′2 and G′3 are defined as:

G′1 =
[ √

3
3 (b2 − b3), b2 + b3, 1

]

ᵀ

(B.7)

G′2 =
[

−
√
3
3 (b1 + 2b3), −b1, 1

]

ᵀ

(B.8)

G′3 =
[ √

3
3 (b1 + 2b2), −b1, 1

]

ᵀ

(B.9)

And G′ is calculated as:

G′ =
1

b1 + b2 + b3
(enc3cmcUMB3







b1√
3
3 (b1 + 2b2)

0







+ enc2cmcUMB2







b1√
3
3 (−b1 − 2b3)

0







− enc1cmcUMB1







b2 + b3√
3
3 (b3 − b2)

0






) (B.10)
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C Derivation of Partials of Hzt

To solve (6.5), six partial derivatives must be solved. Three are partials of vectors: p1, v12 and

v13, which are matrices in R
3×12. And three are partials of scalar values: k1, k2 and k3, which

are vectors in R
1×12. In all the equations presented:

vab = pb − pa (C.1)

The following notation will be used to represent the Caley-Menger determinants:

D(pa,pb) = Dab (C.2)

D(pa,pb;pa,pc) = Dab;ac (C.3)

The partials of vectors are:

∂p1

∂qz
=

[

I 0 0 0

]

(C.4)

∂v12

∂qz
=

[

−I I 0 0

]

(C.5)

∂v13

∂qz
=

[

−I 0 I 0

]

(C.6)

where I and 0 are the identity and null matrix in R
3×3. Now, the partial of the scalars ki,

i ∈ 1, 2, 3, can be written in matrix form as:

∂ki
∂qz

=
[

∂ki
∂p1

∂ki
∂p2

∂ki
∂p3

∂ki
∂l

]

(C.7)

qz =
[

p
ᵀ

1 p
ᵀ

2 p
ᵀ

3 l1u l2u l3u

]

ᵀ

=













p1

p2

p3

l













(C.8)
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Using (3.6), (3.7) and (3.8), the partials of ki can be obtained.

∂k1
∂pi

= − 1

D123

∂D123;13u

∂pi
+
D123;13u

D2
123

∂D123

∂pi
(C.9)

∂k2
∂pi

=
1

D123

∂D123;12u

∂pi
− D123;12u

D2
123

∂D123

∂pi
(C.10)

∂k3
∂pi

=
1

2D123

√
D123u

∂D123u

∂pi
−
√
D123u

D2
123

∂D123

∂pi
(C.11)

Then, it is only needed to calculate the partials ∂D123/∂pi, ∂D123u/∂pi, ∂D123;13u/∂pi and

∂D123;12u/∂pi. For that, the following partials are defined:

∂Dab

∂pa
=

∂‖pb − pa‖2
∂pa

= −2vab (C.12)

∂Dab

∂pb
=

∂‖pb − pa‖2
∂pb

= 2vab (C.13)

In all the equations:

Ab =

√
D123

2
(C.14)

V =

√
D123u

6
(C.15)

The partials ∂D123/∂pi are:

∂D123

∂p1
= D12(−v13 + v12) +D13(−v12 + v13) +D23(−v12 − v13) (C.16)

∂D123

∂p2
= D12(−v23 − v12) +D23(v12 + v23) +D13(−v23 + v12) (C.17)

∂D123

∂p3
= D23(v13 − v23) +D13(v23 − v13) +D12(v23 + v13) (C.18)

∂D123u/∂pi derivations are as follows:

∂D123u

∂p1
=

1

2
((−(l21ul23u + l22ul

2
3u − l21ul22u − l43u)

+ 2D12l
2
3u +D13D23 −D13(l

2
2u + l23u)−D23(l

2
1u + l23u))v12

+ (−(l21ul22u + l22ul
2
3u − l21ul23u − l42u)

+ 2D13l
2
2u +D12D23 −D12(l

2
2u + l23u)−D23(l

2
1u + l22u))v13) (C.19)
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∂D123u

∂p2
=

1

2
(((l22ul

2
3u + l21ul

2
3u − l22ul21u − l43u)

− 2D12l
2
3u −D23D13 +D23(l

2
1u + l23u) +D13(l

2
2u + l23u))v12

+ (−(l22ul21u + l21ul
2
3u − l22ul23u − l41u)

+ 2D23l
2
1u +D12D13 −D12(l

2
1u + l23u)−D13(l

2
2u + l21u))v23) (C.20)

∂D123u

∂p3
=

1

2
(((l23ul

2
2u + l21ul

2
2u − l21ul23u − l42u)

− 2D13l
2
2u −D23D12 +D23(l

2
1u + l22u) +D12(l

2
3u + l22u))v13

+ ((l23ul
2
1u + l21ul

2
2u − l22ul23u − l41u)

− 2D23l
2
1u −D13D12 +D13(l

2
1u + l22u) +D12(l

2
3u + l21u))v23) (C.21)

∂D123;13u/∂pi are calculated as:

∂D123;13u

∂p1
=

1

2
((l23u − l21u +D13)v12 + (l21u − 2l22u + l23u − 2D13 +D12 +D23)v13) (C.22)

∂D123;13u

∂p2
=

1

2
((l21u − l23u −D13)v12 + (l21u − l23u +D13)v23) (C.23)

∂D123;13u

∂p3
=

1

2
((2l22u − l21u − l23u + 2D13 −D12 −D23)v13 + (l23u − l21u −D13)v23) (C.24)

Finally, ∂D123;12u/∂pi are:

∂D123;12u

∂p1
=

1

2
((2l23u − l21u − l22u −D13 −D23 + 2D12)v12 + (l21u − l22u −D12)v13) (C.25)

∂D123;12u

∂p2
=

1

2
((l21u + l22u − 2l23u − 2D12 +D13 +D23)v12 + (l22u − l21u −D12)v23) (C.26)

∂D123;12u

∂p3
=

1

2
((−l21u + l22u +D12)v13 + (l21u − l22u +D12)v23) (C.27)

∂ki/∂l are defined in [15], they are:

∂k1
∂l

=
[

∂k1
∂l1u

∂k1
∂l2u

∂k1
∂l3u

]

=
1

4A2
b

[

l1uD23;13,−l2uD13, l3uD12;13

]

(C.28)

∂k2
∂l

=
[

∂k2
∂l1u

∂k2
∂l2u

∂k2
∂l3u

]

=
1

4A2
b

[

−l1uD23;12, l2uD13;12,−l3uD12

]

(C.29)

∂k3
∂l

=
[

∂k3
∂l1u

∂k3
∂l2u

∂k3
∂l3u

]

=
1

24A2
bV

[

−l1uD123;32u,−l2uD123;13u,−l3uD123;21u

]

(C.30)
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D Derived Probability Distributions

If a process has various outcomes for a given event, then those outcomes can be presented as a

r.v., which is a function whose domain is the set of all the outcomes. A widely used probability

function is the Gaussian distribution1, which can be seen in natural processes and is commonly

used as noise for dynamic environments. A Gaussian distribution is defined by its mean and

covariance:

fX = fX(x) = (2πσ)−
1
2 exp(−1

2

(x− µ)2
σ2

) = N (µ, σ2) (D.1)

This PDF has a CDF given by:

FX = FX(x) =

∫ ∞

−∞
fXdx (D.2)

If x is used in a function g(x), then the effects of the probability distribution of x, fX , can

be translated into g(x).

fX(g(x)) =
fX(x1)

|g′(x1)|
+
fX(x2)

|g′(x2)|
+ · · ·+ fX(xn)

|g′(xn)|
(D.3)

where {x1, x2, · · · , xn} are the roots of g(x). Now, if two functions g(x, y) and h(x, y) were to be

functions of two r.v. x and y, the joint density function is given by:

fXY (g(x, y), h(x, y)) =
fXY (x1, y1)

|J(x1, y1)|
+
fXY (x2, y2)

|J(x2, y2)|
+ · · ·+ fXY (xn, yn)

|J(xn, yn)|
(D.4)

where J(x, y) is the Jacobian:

J(x, y) =

∣

∣

∣

∣

∣

∂g(x,y)
∂x

∂g(x,y)
∂y

∂h(x,y)
∂x

∂h(x,y)
∂y

∣

∣

∣

∣

∣

(D.5)

The concepts of Eq. (D.4) and Eq. (D.5) can be expanded to more than two dimensions.

1A Gaussian distribution is also called normal distribution.
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