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Delta expansion and Wilson fermions in the Gross-Neveu model:
Compatibility with linear divergence and continuum limit from inverse-mass expansion
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We apply δ-expansion to the Gross-Neveu model with Wilson fermions in the large N limit and investigate
dynamical mass generation from inverse-mass expansion. The dimensionless mass M defined on the basis of
the effective potential is utilized as the expansion parameter of the bare coupling constant β, which is partially
renormalized by the subtraction of linear divergence. We show that the δ-expansion of the 1/M series of β
is compatible with the mass renormalization. After confirmation of the continuum scaling of bare coupling
without fermion doubling, we attempt to estimate dynamical mass in the continuum limit and, for range of
Wilson parameter r ∈ (0.8, 1.0), obtain results approaching to the exact value .
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I. INTRODUCTION

As well known, the system of real fermion fields on lattices
with translational invariance, chiral symmetry and locality has
been found to contain non-physical redundancy [1]. This no-
go-theorem forbids any simple or straightforward fermion im-
plementation into the lattice. The earliest proposal to circum-
vent this problem came from lattice inventor K. G. Wilson
[2], who suggested breaking the chiral symmetry to the first
order in the lattice spacing a. Among other proposals [3],
Wilson’s fermion system has an advantage in the strong cou-
pling expansion, since his system enables an easy path to the
expansion. The strong coupling expansion provides a sim-
ple, systematic and powerful computational scheme to clarify
rich physics outside the scope of continuum perturbation the-
ory. Pertaining to the approach where the continuum limit
is accessed by the strong coupling series under the crucial
help of δ-expansion [4–6], in this study we focus on the Wil-
son fermion system and investigate the recovery of asymptotic
freedom and dynamical mass generation in a 2D lattice Gross-
Neveu model in the large N limit [7].

In the formulation with auxiliary field σx, the action of the
lattice Gross-Neveu model reads (μ = 1, 2)

S = −a

2

∑
x,μ

[
ψ̄x(r − γμ)ψx+μ + ψ̄x+μ(r + γμ)ψx

]

+2ar
∑
x

ψ̄xψx + a2
∑
x

σxψ̄xψx

+
Na2

2g2

∑
x

(σx − δm)2, (1)

where ψx and g stand for the N flavor fermion on site x and
the bare coupling constant, respectively. One choice for the
explicit γ matrix is

γ1 = σ2, γ2 = σ1, γ5 = σ3 = iγ1γ2 (2)
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where

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (3)

and σ2
k = 1 (k = 1, 2, 3). The parameter r is called the

Wilson parameter and is kept at non-zero to avoid fermion
species doubling. δm means the linearly divergent mass that
is fixed by one-loop computation. The fermion propagator in
the momentum space (−π/a < pμ < π/a) reads

SF (p) =
1∑

μ iγμ
1
a sin apμ + r

a

∑
μ(1− cos apμ)

, (4)

where μ takes the values 1, 2. The extra added term in S−1
F

due to Wilson behaves as (1/2)ra
∑

μ p
2
μ near pμ ∼ 0 and is

negligible. At a corner of the Brillouin zone, p = (π/a, π/a)
for example, it behaves as 4r/a and grows to infinity as
a → 0. In addition of the four corners, the extra term behaves
near the boundary of the Brillouin zone as 2r/a or 4r/a and
behaves as the rest mass which goes on to infinity and decou-
ples in the continuum limit.

Due to the explicit breaking of the γ5 symmetry at r �= 0,
the radiative correction for the self energy diverges linearly
and the counter term represented by δmψ̄ψ must be accounted
for. Explicit calculation specifies that

δm = −(2g2/a)I (5)

where I is given by

I(r) =

∫ π

−π

d2p

(2π)2
r
∑

μ(1− cos pμ)

{r∑μ(1− cos pμ)}2 +
∑

μ sin
2 pμ

.

(6)
By introducing the mass counter term, the fermion stays mass-
less to all orders of perturbative expansion.

The basic computational framework we take is the expan-
sion in inverse powers of the mass suitably defined to be di-
mensionless with the combination of the lattice spacing a.
Largeness of the mass M means largeness of the lattice spac-
ing a, and therefore the 1/M expansion is equivalent with the
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strong coupling expansion. In the present work, first, we show
that the mass renormalization is compatible with the large
mass expansion even when the δ expansion is applied. This
corrects the wrong statement in ref. [6] that the conventional
truncation prescription of the δ-expansion fails to remove the
linear divergence. We next confirm that the scaling of bare
coupling (we do not perform full renormalization including
the coupling constant, since thus far our approach depends
solely on the bare quantities) is physical without fermion dou-
bling. Then, we demonstrate that the mass computation can be
approximately carried out from large mass expansion, which
is valid in the large lattice spacings. With this detailed analy-
sis of the δ-expansion to a solvable fermion model, we obtain
further evidence of the effectiveness of δ-expansion combined
with the large mass expansion.

II. ESTIMATION OF MASS FROM 1/M EXPANSION

A. Overview and strategy

The mass M used in this work is defined through the effec-
tive potential V (σ). In the large N limit, the fermion integra-
tion is quadratic and results in

V a2 =
a2(σ − δm)2

2g2
−

∫ π

−π

d2p

(2π)2
log

[ ∑
μ=1,2

sin2 pμ

+(σa+ r
∑
μ=1,2

(1− cos pμ))
2
]
. (7)

The mass mD to be dynamically generated is given by mD =
σ∗ where σ∗ denotes the solution of dV/dσ = 0. Then we
define the dimensionless mass by

mDa = M. (8)

This reveals that 1/M expansion is an expansion effective at
large lattice spacings. The continuum limit is apparently the
limit M → 0.

The necessary condition of the ground state dV/dσ = 0
gives the gap condition. It reads in terms of M(= aσ∗) as

M = aδm+ 2g2
∫ π

−π

d2p

(2π)2

M + r
∑

μ(1− cos pμ)

{M + r
∑

μ(1− cos pμ)}2 +
∑

μ sin
2 pμ

= 2g2
[
− I(r) +

∫ π

−π

d2p

(2π)2

M + r
∑

μ(1− cos pμ)

{M + r
∑

μ(1− cos pμ)}2 +
∑

μ sin
2 pμ

]
(9)

For a given positive value of g2, there corresponds one value
of M(g2, r). For example, as g2 → 0 in accord with the
asymptotic freedom, M → 0 as expected. There appears,
however, the upper limit of M in the strong coupling limit
g2 → ∞ due to the subtraction of linear divergence (In

a large M region, the contribution of the counter term be-
comes dominant for any non-zero r). The limit M(∞, r) is
smaller for larger r and larger for smaller r. For example, at
r = 1, M(∞, 1) = 0.46732772346 · · ·. In the limit r → 0,
M(∞, r) → ∞. Thus, 1/M expansion covers both physical
and unphysical regions.

Now, from (9), it follows that

β :=
1

2g2

=

∫ π

−π

d2p

(2π)2
1 + r/M

∑
μ(1− cos pμ)

{M + r
∑

μ(1− cos pμ)}2 +
∑

μ sin
2 pμ

−I(r)

M
. (10)

For naive fermion at r = 0, I(0) = 0 and (10) gives β =∫ π

−π
d2p
(2π)2

1
M2+

∑
μ sin2 pμ

. Thus, β becomes a function in the
square of M rather than M itself. In bosonic cases such as the
non-linear σ models and Ising models, the inverse coupling
constant or the inverse temperature is described in the square
of the mass. There exists a discrepancy in the suitable mass
parameter between the present model at r �= 0 and bosonic
models.

Although the unphysical region is also covered, 1/M ex-
pansion for β, which we denote as β>, is readily obtained as

β> = − 1

M
I(r) (11)

+
{ 1

M2
+

−2r

M3
+

−1 + 5r2

M4
+O(M−5)

}
.

The above expansion becomes useless beyond the r-
dependent convergence radius, and the small a behavior can-
not be accessed. As discussed below, the δ-expansion changes
the status in a drastic manner.

Suppose that β> is truncated at order n such that βn> =∑n
k=1 bk/M

k. The result of the δ-expansion is summarized
by

M−k →
(
n

k

)
tk (12)

with the binomial coefficient
(
n

k

)
=

n!

k!(n− k)!
. (13)

The δ-expansion induces an order-dependent transforma-
tion from

∑n
k=1 bk/M

k to the truncated series in t,∑n
k=1 bn

(
n
k

)
tk. Let us use the notation D[βn>] or simply β̄n>

for the transformation of β. Then

β̄n>(t) = −I(r)

(
n

1

)
t+

{(n
2

)
t2 − 2r

(
n

3

)
t3

+(−1 + 5r2)

(
n

4

)
t4 + · · ·+ bn

(
n

n

)
tn
}
.(14)

Here, bn stands for the coefficient of β> at M−n. Crucial ad-
vantage of β̄n> is that it exhibits the scaling behavior within
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its effective region at small t. The rigorous specification of
the effective region is not known but actually, the plots shown
in Fig. 1 exhibit the expected logarithmic continuum scal-
ing of β̄n>. As r decreases from 6/5, the effective region

FIG. 1. Plots of β̄24> and β̄24< ∼ 1/(2π)(log(Ct) + H24) at r =
6/5 (C = 0.4899), r = 1 (C = 0.5716), r = 4/5 (C = 0.7026)
and 1/2 (C = 1.2731). Dashed line indicates continuum behavior
at respective value of the Wilson parameter. The harmonic constant
added to the logarithmic term comes from the δ-expansion.

of β̄n> grows broader. However, as found from the 4th plot

at r = 1/2, the behavior of β̄n> becomes oscillatory. This
oscillatory behavior becomes stronger for lower r. Note that
the oscillatory behavior is a particular property in β̄n>, the δ
expansion of the 1/M expansion, and not observable in the
original exact function β(M) given by (10).

The oscillation shows the fluctuation around the scaling be-
havior, which makes the estimation too complicated. Thus,
we understand that there are preferred values of r. Within the
range of these preferred values, the asymptotic freedom be-
havior of the bare coupling is observed and the matching of
the behavior of β̄n> with δ-expanded β in the scaling region
would enable us to estimate critical quantities in the contin-
uum limit. Although in ref. [6], we have wrongly stated that
the cancellation of the first term in (14) (the counter term con-
tribution from the linear divergence) with the expanded series,
the rest set of (14), is incomplete, we correct this by stating
here that the renormalization of the linear divergence is effec-
tive under the δ-expansion [8].

Most of the scaling behavior information near the contin-
uum limit is governed by the ultraviolet structure of the model.
For example, the logarithmic behavior with the coefficient
1/(2π) is found from the perturbative expansion. On the other
hand, nonperturbative information such as the value of the dy-
namical mass cannot be reached merely from the results of
perturbative series. In the Gross-Neveu model in the large
N limit, the only quantity of nonperturbative nature included
in the bare coupling is the dynamical mass to be generated.
We propose that the information in β̄n> effective at small t is
enough to estimate the dynamical mass mD. To make the es-
timation of mD simpler and more accurate, we use the pertur-
bative information of the ultraviolet divergence near the con-
tinuum limit in what follows.

We find from the perturbative renormalization group that
the behavior of the bare coupling constant is

β(M) ∼ 1

2π
log(M/C), (15)

with unknown constant C. Since the bare coupling should
behave as β(M) ∼ log(aΛL)/(2π) in the M → 0 limit, we
find

mD = CΛL (16)

where ΛL stands for the mass scale on the square lattice. Thus
the estimation of the constant C directly gives the dynamical
mass.

The non-perturbative constant C depends on the Wilson pa-
rameter and consequently also on ΛL, as mD is universal. The
non-universality of the scale ΛL is natural since it depends on
the microscopic construction of the lattice model. Analyti-
cally, C is obtained by the limit, C = limM→0 exp(logM −
2πβ(M)). By the expansion of β(M) given by (10) in the
mass M , we then obtain

C = exp[2π(c1 − 2c2)], (17)

where
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c1 = lim
M→0

[ ∫ π

−π

d2p

(2π)2
1

(M + r
∑

μ(1− cos pμ))2 +
∑

μ sin
2 pμ

+
logM

2π

]
(18)

c2 =

∫ π

−π

d2p

(2π)2

[
r
∑

μ(1− cos pμ)

(r
∑

μ(1− cos pμ))2 +
∑

μ sin
2 pμ

]2
. (19)

From numerical integration, we find that C =
0.4899, 0.5716, 0.7026, 1.2731 for r = 6/5, 1, 4/5, 1/2,
respectively. These are the values used in the experimental
plots in Fig. 1.

In the large N limit, the higher order corrections to the lead-
ing log form the lattice artifact which is a mixture of the pow-
ers of M and logM . These terms can be computed if we use
the closed result (10). However, using detailed information is
not of real significance in our study, as our aim is to use only
accessible information in the perturbation theory and the large
M expansion. Hence, we here assume that

β<(M) =
1

2π
log(M/C) +R, (20)

where R denotes the lattice artifact obeying limM→0 R = 0.
The subscript ”<” means the expansion at small M . For the
matching of β̄n> with the δ-expanded β<, D[β<] = β̄n<, we
use the extension of the binomial coefficient by the Gamma
functions,

Mλ →
(

n

−λ

)
t−λ, (21)

where
(

n

−λ

)
=

Γ(n+ 1)

Γ(−λ+ 1)Γ(n+ λ+ 1)
. (22)

Here λ denotes any real number. Taking λ infinitesimal in
(21), we obtain 1 → 1 and logM → − log t−Hn where the
harmonic number Hn is given by

Hn =

n∑
k=1

1

k
. (23)

The δ-expansion on β<(M) to the order n thus provides the
transform

β̄n<(t) = − 1

2π
{log(Ct) +Hn}+ R̄n. (24)

The matching of β̄n> and β̄n< enables us to estimate the con-
stant C which directly gives the dynamical mass. The match-
ing process is conveniently carried out through use of linear
differential equation (LDE) to be approximately satisfied by
β̄n<. The construction of the LDE needs, in a strict sense,
the information of the lattice artifact R̄. Though the explicit
expansion from the gap equation (10) proves the existence of
M � logM as mentioned, we ignore it here and proceed in a
robust manner to mimic the complicated structure with sim-
ple power like corrections,

R̄ = c1t
−p1 + c2t

−p1 + · · · , (25)

where 0 < p1 < p2 < · · ·. Here we do not restrict the expo-
nent pk be an integer but rather let it possibly take a positive
real number. In the estimation process of C based on LDE, the
values of exponents will be optimized to non-integer value for
the best matching.

Truncation of R̄ to the first order gives β̄n< =
− 1

2π{log(Ct) + Hn} + c1t
−p1 . The exponent of the loga-

rithmic term is considered zero of double degeneracy. Thus,
the ansatz with one-parameter obeys

[
0 +

d

d log t

]2[
p1 +

d

d log t

]
β̄n< = 0. (26)

In the matching region where the above LDE is valid, the
function β̄n> is also effective and approximately satisfies the
same LDE as long as the order n is large enough. Hence, for
large n, we deal with the same LDE for β̄n>,

[
0 +

d

d log t

]2[
p1 +

d

d log t

]
β̄n> = 0, (27)

and the integration over log t provides
[
1 + p−1

1

d

d log t

]
β̄n> = − 1

2π
{log(Ct) +Hn}, (28)

and
[
1+p−1

1

d

d log t

]
β̄n>+

1

2π
(log t+Hn) = − 1

2π
logC. (29)

To estimate C, we need to input values of p1 and t around
which point the LDE is considered to be satisfied. To obtain
an optimal set of (p1, t), we utilize an extension of the prin-
ciple of minimum sensitivity (PMS) [9, 10]. We first demand
that the estimation be done at the point t where the left-hand
side of (29) is stationary with respect to t. We further de-
mand that the reliable estimation point be in the scaling re-
gion, shown in this case as the plateau. Then, it is natural to
utilize the second derivative of the left-hand side of (29) as
zero or approximately zero at the best estimation point. These
conditions are written as

[
1 + p−1

1

d

d log t

]
β̄
(1)
n> +

1

2π
= 0, (30)

[
1 + p−1

1

d

d log t

]
β̄
(2)
n> ∼ 0 (31)

The symbol ”∼” in (31) means the exact or approximate
equality (when a close point to zero exists). Note that the
second condition (31) is nothing but (27). One can first
solve (30) to give p1 as the function of the stationary point
t, 1/p1 = ρ(t). Then, substituting the solution into the left-
hand-side of (31), we can obtain one or several solutions.
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TABLE I. Estimation result of C = 0.5716061 · · · in 1- and 2-
parameter ansatz at r = 1.

order n 20 30 40 50

1-parameter 0.5505666 0.5610658 0.5666871 0.5688271
2-parameter 0.5873315 0.5708970 0.5709232

Among them, the optimal one is identified by the value of t
where all relevant functions β̄

(�)
n> for � = 0, 1, 2, 3 show ex-

pected scalings. For example, β̄n> at r = 1 shows approxi-
mate scaling of about t ∼ 0.5, and optimal solution t∗ should
be found around there. In these natural criteria, we can obtain
only one solution at each order. Using the optimal solution t∗,
we obtain 1/p∗1 = ρ(t∗) and from (29)

C = exp
[
− 2π(β̄n>+1/p∗1β̄

(1)
n>)|t∗ − (log t∗+Hn)

]
(32)

It is also possible to incorporate the next order correc-
tion t−p2 . Then, the LDE with which we start reads as
[0 + d

d log t ]
2[p2 +

d
d log t ][p1 +

d
d log t ]β̄n< = 0 and

[
1 + p−1

2

d

d log t

][
1 + p−1

1

d

d log t

]
β̄n>

+
1

2π
(log t+Hn) = − 1

2π
log(C). (33)

The extended PMS conditions read
[
1 + p−1

2

d

d log t

][
1 + p−1

1

d

d log t

]
β̄
(1)
n> +

1

2π
= 0, (34)

[
1 + p−1

2

d

d log t

][
1 + p−1

1

d

d log t

]
β̄
(2)
n> = 0, (35)

[
1 + p−1

2

d

d log t

][
1 + p−1

1

d

d log t

]
β̄
(3)
n> ∼ 0. (36)

From the first two conditions, we obtain p−1
1 + p−1

2 = ρ(t)
and (p1p2)

−1 = σ(t) as functions of t and then, from the
third condition, optimal t = t∗ can be obtained within the
observable scaling region. The same as with one-parameter
ansatz, we then obtain p∗1 and p∗2 and C from (33).

Next order correction t−p3 is difficult to incorporate, since
the necessary higher order derivatives β̄(�)

n> (� = 6, 7) do not
show scalings even at n = 50 (which is our limit), for practical
reasons related to our computer facility.

B. Estimation at r = 1

We first confine ourselves to the popular choice r = 1. The
results of estimation up to the 2-parameter ansatz are summa-
rized in Table 1 and Fig. 2(a). Figure 2(b) plots the estimation
results of p−1

1 .
We find that the sequence of the C-estimate shows a ten-

dency to the exact value C = 0.5716. The speed of con-
vergence is rather slow in 1-parameter ansatz. The estimate

FIG. 2. Estimation results of (a) C = 0.5716061 · · · and (b) p1 = 1
in 1- and 2-parameter ansatz at r = 1. Plotted estimation is for
n = 20 to 50.

in 2-parameter ansatz yields an accurate value but the onset
of reliable estimation starts around the 35th order. The re-
sult of the p1 estimate shown in Fig. 2(b) was obtained from
the work of C-estimation as a byproduct. The limit of the
sequence suggested is not yet clear. However, it is roughly
approaching the value 1, which is actually the exponent of the
leading order term in R̄: In fact, from the exact result (10), R
is given by R = M(const + const logM) + O(M2). Then,
R̄ = const× (1/t) +O(t−2), giving p1 = 1.

We explored the possibility of the direct estimation of p1
through β̄(3)/β̄(2) showing scaling ∼ −p1. However, we
failed because the ratio function exhibited large oscillation.

C. Estimation at r �= 1

Now, we discuss our estimation work for r �= 1. One might
assume that the case r = 1/2 would provide better values,
since the function β̄n> is closer to β̄n<, as seen in the final
plot in Fig 1. However, β̄n> slightly oscillates at r = 1/2
and the derivatives would show oscillations with larger ampli-
tudes. Actually, by explicit plots of β̄(�)

n> (� = 1, 2), we find
that the LDE approach does not work well due to the disturb-
ing oscillation. Since incorporation of the derivatives is cru-
cial for accurate estimation, this is a serious problem. From
the plots of β̄n> and the derivatives, we arrive at the following
observation.

When r is larger than 1, the oscillation is absent but the ef-
fective range of β̄n> is narrow, giving a less accurate estimate
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FIG. 3. Estimation results of C for r = 1, 0.9, 0.8 at 1- and 2-
parameter ansatze (respectively plotted in the upper and lower parts).
Here C = 0.5716 · · ·, C = 0.62797 · · · and C = 0.7026 · · · for
r = 1, 0.9, 0.8 respectively. The plots show the ratio of the estimate
to the exact values.

of C. When r is less than and close to 1, we observe a weak
oscillatory property in β̄n> and the derivatives at low orders.
Although this makes the estimation slightly complicated, con-
firmation of the scaling region is possible. Around r ∼ 0.8 or
a slightly larger region, the scaling behavior in β̄(�) is roughly
visible in low order derivatives and the estimation protocol by
extended PMS is permitted. The value r = 0.8 is the best
among the three sample values. We confirmed that r smaller
than 0.8 worsens the estimation due to the growing oscilla-
tion. This is why the effective range of the Wilson parameter
is approximately (0.8, 1.0). The estimation result are given in
Fig 3.

We report the results of p1 estimation by p∗1, shown in Fig
4. We find that, in the 1-parameter ansatz, the value r = 0.8
produces the best estimation among the three typical values
r = 0.8, 0.9 and 1.0. In the 2-parameter case, however, the
ansatz r = 0.8 produces a somewhat unstable and oscillatory
sequence. This may be a sign that the smaller r is not adequate
for estimation using higher order derivatives.

Overall, we found that as r gets smaller, the region of con-
tinuum scaling observable in β̄n> becomes wider, but β̄n>

and its derivatives begin to show oscillation at the slightly
smaller value of r = 1. In contrast, when r is larger (r > 1),
the effective region of β̄n> gets narrower and the scaling be-
havior becomes vague. We found that r ∈ (0.8, 1.0) provides
a good estimation up to the 50th order. As in the cases fre-
quently met with the Ising models, the estimation of the dy-
namical mass was superior to the estimation of the exponent

FIG. 4. Estimation results of p1 = 1 for r = 1, 0.9, 0.8 at 1- and 2-
parameter ansatze (respectively plotted in the upper and lower parts).
Here, p1(r, kp) denotes the estimate at Wilson parameter r with k-
parameter ansatz.

p1.

III. CONCLUDING REMARKS

We found that the cancellation of the linear divergence in
β̄n> remains effective under the δ expansion. As a conse-
quence, the true logarithmic behavior of bare coupling was
observed in β̄n>. We remark that the confirmation is explicit
for the range of Wilson parameter r ∈ (0.8, 1) = I . It remains
unclear whether other values of r are essentially useless even
when the order is large enough. The present 50th order study
tells us, however, that other values are not effective for prac-
tical use. In the range of I , the estimation of the dynamical
mass mD is carried out in the 1- and 2-parameter ansatze and
all the sequences indicate the convergence to the exact value.
It is interesting to note that, from the 35th to 36th and from
the 43rd to 44th orders, rather big changes happen for r = 0.8
in 2-parameter ansatz.

It would be interesting to examine the estimation with the
use of the exact value of pi (i = 1, 2). In this case, we uti-
lized PMS in a looser variation of (30), [1 + p−1

1
d

d log t ]β̄
(1)
n> +

1
2π ∼ 0 for the 1-parameter ansatz and [1 + p−1

1
d

d log t ][1 +

p−1
2

d
d log t ]β̄

(1)
n> + 1

2π ∼ 0 for the 2-parameter ansatz. The re-
sults for r = 1 are shown in Fig. 5, along with the results
in the previous full PMS protocol. In the 1-parameter ansatz,
the two sequences had almost the same accuracy (present pro-
tocol with p1 = 1 fixed gave a slightly better result). In the
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FIG. 5. Plots of estimation results for r = 1 in the 1-parameter ansatz
with the input p1 = 1 and 2-parameter ansatz with the inputs p1 = 1
and p2 = 2. For comparison, the results in 1- and 2-parameter ansatz
in the previous section with the full PMS protocol are also plotted.

2-parameter ansatz, the result with the exact input p1 = 1
and p2 = 2 had better behavior to the orders of 20th or so.
However, the two sequences tended to have similar behaviors
at larger orders. From the various results so far obtained, the
accuracy in the Gross-Neveu model with Wilson fermion is
not as good as that in the Ising models. From numerical tests,
this is roughly understood to stem from the behaviors of β̄(k)

n>

(k = 1, 2, · · ·) in that the scaling behavior is not so clear to
a few tens of orders. The reason behind this would be that
non-oscillation of relevant functions needs r around the value
r ∼ 1 and in the region the lattice artifact remains effective.
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