千葉工業大学

博士学位論文

筋電義手制御を目的とした
前腕部表面筋電位信号の高精度解析システム
に関する研究

平成24年3月

木曽 淳
概要

本研究は、実用化につながる筋電義手制御を目的とした「前腕部表面筋電位信号に基づく動作識別法」と「前腕部動作識別のための筋電位信号の最適測定位置推定法」について示す。

「前腕部表面筋電位信号に基づく動作識別法」については3つの手法を示す。始めに、教師なし学習型ニューラルネットである自己組織化マップの学習を最適化することで識別率を上げるために「前腕部動作識別のための自己組織化マップの最適マッピング」について述べる。通常のマッピング法では入力データからマップを学習するとき、マップ全体のユニットを使って同じ特徴を持ったデータ群ごとに分類する。このときデータ群の境界にあるユニットは隣接しているデータ群にあるユニットの両方の情報を学習することになり、データ群の境目で動作を誤認識してしまう可能性がある。そこで本手法では、同じ動作の学習結果を狭い範囲の領域に集中させ、各動作の学習結果群を十分に分散させることができるように自己組織化マップの最適マッピングを提案する。さらに、最適化したマップの特性を利用して動作の誤認識を抑えながら計算量を減らすことができる動作識別法を提案する。そして本手法により動作識別実験を行い、平均88%の識別率を獲得した。

次に、ニューラルネットによる動作識別システムを筋電義手へ実装することを考え、システムを簡潔な構造にすることで「簡潔なニューラルネットによる前腕部動作識別」について述べる。上記の手法は識別率の向上ができ、簡潔なシステムと言えなかった。従来のニューラルネットを用いた動作識別においても、識別精度向上のために筋電位信号の特徴量抽出処理やニューラルネットの構造が複雑になる傾向がある。それでは学習や出力パターンを算出すための計算量が多なくなってしまう、応答性を高くしようとすると演算能力の高い処理装置が必要になり消費電力や価格の上昇に繋がる。そこで本研究ではニューラルネットの構造を複雑化せずに高い識別精度を獲得できるようにすることを目的とし、その方法としてニューラルネットへの入力データと学習用データの最適化法について提案する。そして動作識別実験を行い、90%以上の識別率を獲得した。また、使用中に筋疲労が原因となって筋電位信号の特徴が変化することに対するロバスト性向上の方法を提案する。さらに、コスト面や前腕の切断状況によっては多くの筋電センサの使用が難しい場合があるので、少数チャンネルで高精度に動作識別ができるほうが良い。そこで使用する筋電センサの数を減らしても高い識別精度が得られるように、筋電位信号の特徴量抽出方法と測定位置について実験的に検証する。

最後に、ニューラルネットの学習時に問題であったローカルミニマを回避し、さらに識別システムをより簡潔な構造にするために「適応型ファジィ推論を用いた筋電位信号に基づく前腕部動作識別」について述べる。本手法は、識別対象動作ごとに動作中の筋電位信号の実効値から平均値と標準偏差をチャンネルごとに求め、それらからファジィ
推論のメンバーシップ関数とファジィルールをユーザごとの筋電位信号の特徴に適応させて設計する。そして動作識別実験を行い、98%以上の識別率を獲得した。さらに動作識別を四則演算のみのシンプルな演算処理で行うことで、システムを簡潔な構造にすることができた。本手法においても筋疲労に対するロバスト性向上の方法を提案する。

次に「前腕部動作識別のための筋電位信号の最適測定位置推定法」について2つの手法を示す。過去の研究では、筋電位信号から前腕部動作を識別するときに全ての被験者が同じ位置から筋電位信号を測定することが多い。しかし前腕部動作の特徴を示す最適な筋電位信号が測定できる位置は、人によって異なると考えられ、特に切断者の場合は、切断場所や残存筋の状況などから最適な筋電位信号が測定できる位置は様々に異なると推測できる。そのため、動作識別にとって最適な筋電位信号が測定できる位置を推定し、それらの位置に筋電センサを配置することが必要である。そこで最適な測定位置を推定するために、複数の筋電センサを用いて、複数箇所から同時に筋電位信号を測定し、それらの中から前腕部動作を識別するために最適な測定位置を多変量解析により選択する。そして最適な位置から筋電位信号を測定することにより少数の筋電センサで前腕部動作を識別する。

そこで本研究は、まず「重回帰分析による筋電位信号の最適測定位置推定」について述べる。複数箇所から同時に測定した筋電位信号の実効値に対して主成分分析を行い識別対象動作ごとの総合的特性を求める。そして全動作の実効値と総合的特性に対して重回帰分析を行うことで同時に測定した複数箇所の中から全ての識別対象動作に対して最も影響力の高い測定位置を選択することで最適測定位置とする。

次に「ウィルクスΛに基づいた判別分析による最適測定位置推定」について述べる。上記の手法では最適測定位置を推定したとき、最適位置の選択数に対して明確な判断基準を示すことができなかったので、本手法ではウィルクスΛの統計量により判断基準を示す。複数箇所から同時に測定した筋電位信号の実効値に対して判別分析による変数増減法を行い影響力の高い順に測定位置を選択していく。そしてウィルクスΛにより選択された位置における判別精度を確認し最適測定位置を決定する。本手法により推定された最適測定位置から筋電位信号を測定することにより3つの筋電センサで6種類の動作に対して90%以上の識別率が獲得できた。

本研究では、各手法とも最適測定位置の推定を行う被験者は全て健常者であったが、選択された最適位置はそれぞれ異なっていた。これは被験者ごとに異なる、動作を行うときの“筋肉の使い方の癖”や“体格”などによる筋電位信号の特徴の個人差に応答することができたと推測できる。これらの研究により切断者の残存筋の状況に応じた最適な筋電義手御システムの構築が実現できるので、実際の切断者が筋電義手を使用するときに非常に役に立つといえる。
目次

第 1 章 序論 1
1.1 背景 .. 1
1.2 義手の種類 .. 3
1.3 本研究の位置づけ .. 4
1.4 本研究の概要 .. 6
1.5 本論文の構成 .. 8

第 2 章 高精度解析システム 10
2.1 筋電位 .. 10
 2.1.1 原理 .. 11
 2.1.2 測定法 .. 11
 2.1.3 特徴量 ... 13
 (a) 実効値 ... 13
 (b) パワースペクトル ... 14
 2.1.4 筋疲労 ... 16
2.2 実験装置 ... 16
2.3 測定位置 ... 19
2.4 識別対象動作 ... 20
2.5 解析システム概要 ... 22

第 3 章 前腕部動作識別のための自己組織化マップの最適マッピング 23
3.1 背景・目的 ... 23
3.2 自己組織化マップによる動作識別法 ... 24
 3.2.1 トーラス型自己組織化マップ ... 24
 3.2.2 自己組織化マップの最適化マッピング ... 25
 3.2.3 近傍範囲による動作識別 ... 27
3.3 最適化マッピングによる動作識別能力の実験 ... 28
 3.3.1 実験方法 ... 28
 3.3.2 実験結果および考察 ... 29
 3.3.3 姿勢変化による負荷に対しての検証 ... 31
 3.3.4 今後の課題 ... 32
3.4 まとめ ... 33
第4章 簡潔なニューラルネットによる前腕部動作識別

4.1 背景・目的

4.2 簡潔なニューラルネットによる動作識別法

4.2.1 ニューラルネットへの入力データ最適化法

4.2.2 誤差逆伝播の学習用データ最適化法

4.2.3 動作識別能力実験

4.2.4 実験結果

4.2.5 考察

4.3 筋疲労時のロバスト性向上

4.3.1 筋疲労に対する対策

4.3.2 再学習による動作識別能力実験

4.3.3 実験結果および考察

4.4 最少電極数の筋電位信号による動作識別

4.4.1 最少電極数の実験による検証

4.4.2 実験方法

4.4.3 実験結果および考察

4.4.4 今後の課題

4.5 まとめ

第5章 適応型ファジィ推論を用いた筋電位信号に基づく前腕部動作識別

5.1 背景・目的

5.2 ファジィ推論による動作識別法

5.2.1 筋電位の平均値と標準偏差によるメンバーシップ関数

5.2.2 ファジィルールの設計

5.3 ファジィ推論による動作識別能力の実験

5.3.1 実験方法

5.3.2 実験結果および考察

5.4 筋疲労を考慮したロバスト動作識別

5.4.1 筋疲労に対する対策

5.4.2 再設計による動作識別能力実験

5.4.3 実験結果および考察

5.4.4 今後の課題

5.5 まとめ

第6章 重回帰分析による筋電位信号の最適測定位置推定

6.1 背景・目的

6.2 重回帰分析による最適測定位置の推定
6.2.1 主成分分析による目的変数 ... 64
6.2.2 重回帰分析による最適測定位置推定 ... 65
6.3 最適測定位置による動作識別能力の実験 ... 66
 6.3.1 実験方法 .. 66
 6.3.2 実験結果および考察 ... 67
6.4 まとめ ... 68

第7章 ウィルクスΛに基づいた判別分析による最適測定位置推定 69
7.1 背景・目的 .. 69
7.2 判別分析による最適測定位置推定 ... 69
7.3 最適測定位置による動作識別能力の実験 ... 73
 7.3.1 実験方法 .. 73
 7.3.2 実験結果および考察 ... 73
 7.3.3 今後の課題 .. 74
7.4 まとめ ... 75

第8章 結論 76
8.1 まとめ ... 76
8.2 今後の課題 .. 79

参考文献 82
研究業績 88
謝辞 92

付録A.筋電位測定機器仕様 93
付録B.筋電義手仕様 95
付録C.解析アルゴリズム 96
 C.1 ニューラルネット .. 96
 C.1.1 ニューラルネットの概要 ... 96
 C.1.2 誤差逆伝播（Back Propagation） .. 96
 C.1.3 汎化能力 ... 102
 C.1.4 自己組織化マップ（Self-Organizing Maps:SOM） 103
 C.2 ファジィ推論 ... 105
 C.2.1 ファジィについて .. 105
 C.2.2 ファジィ推論の概要 ... 106
 C.2.3 Min-Max 法 ... 107
付録D.走行危険度を考慮した電動車いすのファジィ推論型障害物回避制御 110

D.1 背景・目的 ... 110
D.2 ファジィアルゴリズムによる障害物回避走行制御法 ... 111
 D.2.1 ファジィアルゴリズムの適用 .. 111
 D.2.2 目標走行方向の推定 ... 112
 D.2.3 走行危険度の考慮 .. 113
 D.2.4 ファジィ制御系の設計 .. 113
D.3 実機による実験的検討 ... 118
 D.3.1 実験装置の概要 ... 118
 D.3.2 直進路での障害物回避実験 ... 119
 D.3.3 曲がり角での障害物回避実験 ... 122
 D.3.4 考察 ... 124
D.4 まとめ ... 125
D.5 参考文献 ... 125
第1章 序論

1.1 背景

安全管理や事故予防が十分認識されている現代社会においても，交通事故や災害などによって腕を失った人が国内外に数多くいる。国内のみで言うと図1-1の「肢体不自由」者中，腕を切断した人は，平成3年は4.08%の11万1000人，平成8年は3.48%の10万2000人，平成13年は3.02%の9万8000人，平成18年は2.4%の8万2000人と10万人前後はいる。そのような人たちは何らかの義手を使用するが，そのほとんどは装飾を目的とした内部に動力を持たないものであり，能動的に駆動するものは現在ではほとんど使用されていない。それでは，日常動作を行うのに大変不便が生じてしまう。そこで，見た目だけでなく自分の意思を反映して動く，失った腕と同等の機能を持つ能動型の義手の開発が期待されている。そのような義手の制御信号として，以前から筋電図（electromyogram: EMG）が着目されており，数多くの研究・開発が行われている。

図1-1 種別別障害者数の推移（身体障害者・在宅）
出典：厚生労働省「平成18年身体障害児・者実態調査」

また現在使用されている義手については、日本国内において代表的な義肢製作所を対象に製作された義手の調査[16]では、最も製作されている義手は、装飾義手であり切断者の87%が使用している。逆に最も使用されていないのは体外力源型の筋電義手であり1%程度の割合しかない。しかし、近畿地区における上肢切断者のアンケート調査[17]では、筋電義手を使用してみたいと考えている切断者は76%と多く、更なる高性能な筋電義手の実用化が期待されている。

現在実用化されている筋電義手は、図1-2に示すドイツのオットー・ボック社[18]の筋電義手が多く知られており世界中に数多くのユーザが存在する。実用化されている筋電義手の多くは手のひらを「開く、握る」のみ行えるものが殆どである。一方、切断者へのアンケート[19]において手首の前後屈伸動作「掌屈、背屈」と回旋動作「回内、回外」の必要性に対する結果が高い値を示しており、特に回旋動作「回内、回外」は日常生活動作を円滑に行うために重要な役割を果たす[20]ので、義手には手首動作が必要である。そこで上記に示したような数多くの研究では前腕部動作識別の研究は行われてきた。しかし、これらの研究成果に基づいたパターン解析による複数動作可能な筋電義手は実用化に至っていない。そこで本研究では実用化につながる解析手法の研究を行う。
1.2 義手の種類

義手は多くの種類があり、その人の障害に合わせていくろいろな工夫ができ、機能的に分けて装飾用、作業用、能動式の3種類がある。また切断・離断部位によって、肩義手、上腕義手、肘義手、前腕義手、手部義手に分けられる。以下に主な義手を機能別に示す。

図 1-3(a)[21]に示す装飾義手は、腕や手の外観を整える目的のもので、ウレタンなどやわらかい素材で表面が作られており、手先を動かすことはできない。図 1-3(b)[22]に示す作業義手は、外観よりも種々の作業に適することを目的に作られているもので、作業に応じて簡単な操作で手先器具を交換でき、外観のことはあまり考えずに、いろいろな作業に使用することだけを目的に作られている。

能動式義手は体内力源型と体外力源型があり、図 1-3(c)[21]に示す体内力源型は身体の運動を利用して手先器具の開閉や肘継手をコントロールする義手で、ハンド式とフック式の2種類ある。図 1-3(d)[23]に示す体外力源型は、筋肉の収縮を電気信号として電動モータの動きを制御する筋電義手があり、失われた身体機能の再現を目指して研究・開発が進められている。

(a) 装飾義手 (b) 作業義手

(c) 能動式義手（体内力源型） (d) 能動式義手（体外力源型）

図 1-3 義手写真
1.3 本研究の位置づけ

筋電位信号による人間支援機器は様々な分野で研究が行われており、1.1 節に示した筋電義手に対する研究以外にも、アシストスーツ[24]、電動車いす[25]、リハビリ支援[26]などの福祉機器に対して研究が行われている。福祉機器の研究は、最終的に実用化されなければ、これらの最新技術を必要とされている人たちの生活は変わらない。そこで研究を行う上で実用化を考慮する必要がある。例えばアシストスーツ[24]は、実用化され病院や福祉施設で導入され始めている。最終的に高性能なシステムが構築できたとしても、福祉機器に搭載できなければ実用化は非常に難しいものになる。したがって本研究は、実用化につながる筋電義手制御を目的とした前腕部筋電位信号の解析を行う。

筋電義手の実用化を実現するには、筋電義手のモーション制御と使用者の動作意思を推定する筋電位信号解析が必要になる。その中でも筋電義手を制御するとき、使用者の意思とは異なる動きをすると非常に危険なので、筋電位信号を高精度に解析する必要がある。1.1 節に示した従来の研究では前腕部動作に対して 90%以上の識別率を示しているが、パターン解析による複数動作可能な筋電義手は実用化に至っていない。その理由として、"前腕部動作識別法"と "筋電位信号の測定法"それぞれに問題点がある。

前腕部動作識別法の問題点については、従来の方法[4][7]では識別精度の向上のために筋電位信号の特徴抽出処理やパターン解析処理が複雑になる傾向がある。それでは動作識別するための計算量が多くなってしまう、応答性を良くしようすると電算能力の高い処理装置が必要になり消費電力や価格の上昇に繋がるので、動作識別システムは簡潔にしなければならない。

筋電位信号の測定法の問題点については、従来の手法では研究ごとに全ての被験者が出位置から筋電位信号を測定することが多い。前腕部動作の特徴を示す最適な筋電位信号が測定できる位置は、人によって異なると考えられる。特に切断者の場合は、切断場所や残存筋の状況などから最適な測定位置は様々に異なると推測できる。そこで筋電位信号は、被験者ごとの最適な位置から測定した方が良い。また動作識別のために多数の筋電センサが使用されることが多い。例えば、隠れマルコフモデルに基づくカルトンニューラルネットによる動作識別法[4]では6種類の動作に対して平均92%の識別率を獲得しているが、前腕部に5チャンネル、上腕部に1チャンネルの計6チャンネルの筋電センサを使用しており筋電義手に実装するには難しいと考えられる。また、6×16チャンネルの電極からモンテカルロ法による動作認識法[6]では18種類の動作に対して平均97%以上の識別率を得ているが動作識別のために前腕部へ16チャンネルの電極を使用している。多くの動作に対して高い識別率を得ることができたとしても、16チャンネルの電極は筋電義手に実装するのは難しいと考えられる。義手を腕に装着させるソケットの形状や前腕の切断状況などにより多数の筋電センサの使用が難しいので、少数の筋電センサで動作識別ができるだけならばならない。

これらの問題を解決するために本研究では、前腕部動作識別法については90%以上の
識別率が獲得できる簡潔なシステムを構築する。また筋電位信号の測定法については、被験者ごとに異なる前腕部動作識別のための筋電位信号の最適な測定位置の推定を行う。特に筋電位信号の最適な測定位置については、前腕部動作を行うときの筋電位信号の個人差に対応することができ、さらに最適な位置から筋電位信号を測定することで動作識別に必要な最少の筋電センサで動作識別が行えるので、実用化につながる非常に重要なテーマである。本研究の位置づけについて図1-4に示す。

従来の研究
前腕部動作識別法
・統計構造に基づいたニューラルネットを新たに構築しての動作識別法
・6×16チャンネルの電極からモンテカルロ法による動作認識法
・高速フーリエ変換により特徴量抽出しニューラルネットによる動作識別
筋電位信号の測定法
・動作識別のために前腕部5ch、上腕部1chの計6chの筋電センサを使用
・動作識別のために前腕部へ16chの電極を使用

問題点
前腕部動作識別法：解析システムの複雑化
→演算能力の高い処理装置が必要になり消費電力や価格の上昇に繋がる。
筋電位信号の測定法：全被験者の測定位置が同じ、多数の筋電センサを使用
→最適な筋電位信号が測定できる位置は、人によって異なる。
→多数の筋電センサは実装することができない。

本研究の目的
前腕部動作識別法：90%以上の識別率が獲得できる簡潔なシステムの構築
筋電位信号の測定法：前腕部動作識別のための筋電位信号の最適な測定位置の推定
1.4 本研究の概要

本研究では、筋電義手制御を目的とした「前腕部表面筋電位信号に基づく動作識別法」と「前腕部動作識別のための筋電位信号の最適測定位置推定法」について示す。

図 1-5 筋電義手と前腕

本研究では「前腕部表面筋電位信号に基づく動作識別法」について3つの手法を示す。始めに、教師なし学習型ニューラルネットである自己組織化マップの学習を最適化することで識別率を上げるために「前腕部動作識別のための自己組織化マップの最適マッピング」[27]について述べる。通常のマッピング法では入力データからマップを学習するとき、マップ全体のユニットを使って同じ特徴を持ったデータ群ごとに分類する。このときデータ群の境界にあるユニットは隣接しているデータ群にあるユーニットの両方の情報を学習することになり、データ群の境目で動作を誤認識してしまう可能性がある。そこで本研究は、同じ動作の学習結果はより狭い範囲の領域に集中させ、各動作の学習結果群を十分に分散させることができる自己組織化マップの最適マッピングを提案する。さらに、最適化したマップの特性を利用して動作の誤認識を抑えながら計算量を減らすこともできる動作識別法を提案する。

次に、ニューラルネットによる動作識別システムを筋電義手へ実装することを考え、システムを簡潔な構造にするために「簡潔なニューラルネットによる前腕部動作識別」[28]について述べる。上記の手法は識別率の向上ができたが、簡潔なシステムと言えなかった。従来の方法[4][7]においても、識別精度の向上のために筋電位信号の特徴抽出処理やニューラルネットの構成が複雑になる傾向がある。それでは学習や出力パターンを算出するための計算量が多くなってしまい、応答性を良くしようとすると演算能力の
高い処理装置が必要になり消費電力や価格の上昇に繋がる。そこで、ニューラルネットの構造を複雑化せずに高い識別精度を獲得できるようにすることを目的とし、その方法としてニューラルネットへの「入力データ」と「学習用データ」の最適化法について提案し識別精度の確認をする。また、使用中に筋疲労などが原因となって筋電位の特徴が変化することに対するロバスト性向上の方法を提案する。さらに、コスト面や前腕の切断状況によっては多くの筋電センサの使用が難しい場合があるので、少数チャンネルで高精度に動作識別ができるほうが良い。そこで使用する筋電センサの数を減らしながらも高い識別精度が得られるように、筋電位信号の特徴量抽出方法や測定位置について実験的に検証する。

最後に、ニューラルネットの学習時に問題であったローカルミニマを回避し、さらに識別システムを簡潔に構築するために「適応型ファジィ推論を用いた筋電位信号に基づく前腕部動作識別」[29]について述べる。本手法は、識別対象動作ごと動作中の筋電位信号の実効値から平均値と標準偏差をチャンネルごとに求め、それらからファジィ推論のメンバーシップ関数とファジィルールをユーザごとの筋電位信号の特徴に適応させて設計することで前腕部動作に対して高い識別精度を獲得する。さらに可能性分布推論法によりファジィ推論を行うことにより四則演算のみのシンプルな演算処理で動作識別を行い、簡潔なシステムにする。また本手法においても筋疲労に対するロバスト性向上の方法を提案する。そして、上記に示した3つの手法それぞれに対して筋電義手シミュレータによるいくつかの実験により提案した動作識別法の有効性を示す。

次に「前腕部動作識別のための筋電位信号の最適測定位置推定法」について2つの手法を示す。過去の研究では、筋電位信号から動作を識別するとき、全ての被験者が同じ位置から筋電位信号を測定することが多い。しかし、前腕部動作の特徴を示す筋電位信号が測定できる位置は、人によって異なると考えられ、特に切断者の場合は、切断場所や残存筋の状況などから最適な測定位置は様々に異なると推測できる。また、コストや前腕の切断状況により多数の筋電センサの使用が難しい場合があるので、少数の筋電センサで動作識別が可能である。そこで、動作識別にとって最適な筋電位信号が測定できる位置を推定し、それらの位置に筋電センサを配置することが必要である。最適な位置から筋電位信号を測定することで動作識別に必要な最少の筋電センサで動作識別が行える可能性がある。よって本研究の目的は、動作識別のための最適測定位置を推定し、前腕部動作に対して高い識別精度を獲得することである。近年の研究でも筋電位信号の測定位置に着目した研究がいくつか行われている。例えば、偏 KL 情報量に基づく変数選択法による筋電位センサの選択[30]、自動表面筋電図解析技術を用いた最適電極位置の調査[31]などの研究が行われている。

本研究は、まず「重回帰分析による筋電位信号の最適測定位置推定」[32]について述べる。複数箇所から同時に測定した筋電位信号の実効値に対して主成分分析を行い識別対象動作ごとの総合的特性を求める。そして全動作の実効値と総合的特性に対して重回帰分析を行うことで同時に測定した複数箇所の中から全ての識別対象動作に対して最
も影響力の高い測定位置を選択することで最適測定位置とする．
次に「ウィルクス Λに基づいた判別分析による最適測定位置推定」[33]について述べる．上記の手法では最適測定位置を推定したとき，最適位置の選択数に対して明確な判断基準を示すことができなかったので，本手法ではウィルクス Λの統計量により判断基準を示す．複数箇所から同時に測定した筋電位信号の実効値に対して判別分析による変数増減法を行い，影響力の高い順に測定位置を選択していく．そして選択された位置での判別精度をウィルクス Λにより確認することで最適測定位置を決定する．最適測定位置を推定することにより，前腕部動作を行うときの筋肉の使い方の癖や体格などによる筋電位信号の個人差に対応することができ，切断者が筋電義手を使用するとき非常に役に立つといえる．

また本研究の主たる対象は福祉機器の一つである筋電義手であるが，筋電位信号の解析を行う過程で得た，ファジィ推論によるヒトの意思を推定する方法を用いて「走行危険度を考慮した電動車いすのファジィ推論型障害物回避制御」[34]を行ったので付録として示す．電動車いすの需要は年々増加しているが，高齢者は視界が狭いことやジョイスティック操作のミスなどにより，人混みや曲がり角での接触事故も増加してきている．警察庁調べによる全国の電動車いすの事故発生件数は，平成 20 年が 232 件であり，平成 10 年と比較すると 100 件近く増加している．特に人混みや曲がり角では細かなジョイスティック操作が必要であり，高齢者にとっては操作が難しいと想像できる．また，操作者の動作のイメージと実際の車いすの挙動に多少のズレが存在しうることも事故の原因の一つと推測できる．そこで，ジョイスティック型電動車いすの衝突事故を防ぐために，ジョイスティック操作入力，障害物との距離，車いすの速度などの情報に基づくファジィアルゴリズムを用いた障害物回避制御法を提案し，実機を用いた走行実験を通じてその有効性を示す．

1.5 本論文の構成

本論文の構成を図 1-6 に示す．2 章では高精度解析システムにおいて解析対象である筋電位信号の原理と特徴量，さらに本研究で使う実験装置と測定位置について示す．3 章から 5 章では「前腕部表面筋電位信号に基づく動作識別法」について示し，6 章と 7 章では「前腕部動作識別のための筋電位信号の最適測定位置推定法」について示す．6 章，7 章では，選択された最適測定位置から測定した筋電位信号に基づき 5 章の適応型ファジィ推論により動作識別を行う．そして，第 8 章でまとめと今後の課題を示す．
第1章 序論

第2章 高精度解析システム

前腕部動作識別 → 最適測定位置推定

第3章 自己組織化マップの最適マッピングによる前腕部動作識別 → 学習の最適化による識別率向上

第4章 簡潔なニューラルネットによる前腕部動作識別 → 義手へ実装するための簡潔な解析システムの構築

第5章 適応型ファジー推論による前腕部動作識別 → ニューラルネットの学習で問題であったローカルミニマを回避

第6章 重回帰分析による筋電位信号の最適測定位置推定 → 8箇所から最適測定位置の選択

第7章 ウィルクスΛに基づいた判別分析による最適測定位置推定 → 選択された最適測定位置に対して明確な判断基準を示す。

第6章, 第7章 選択された最適測定位置から測定した筋電位信号に基づき適応型ファジー推論で動作識別をする。

第8章 結論

図1-6 本論文の構成
第2章 高精度解析システム

前腕部動作識別法については、過去の研究では識別率が90%以上獲得できれば高精度としていることが多い。そこで日常生活で筋電義手を安全に使用するために、90%以上の識別率を獲得することを目的とする。また義手を腕に装着させるソケットの形状や前腕の切断状況などにより多数の筋電センサの使用が難しくなるので、最適測定位置を推定することで筋電センサの数を3個以下にする。したがって本研究は、3個以下の筋電センサで90%以上の識別率を獲得することができる高精度解析システムを実現する。

以下に、筋電位信号の原理と特徴量、本研究で使う実験装置と測定位置について示す。

2.1 筋電位

筋電位とは、筋線維が脳から運動指令を受けたときに発生するものである。したがって、筋電位は運動指令情報を含んでいるのでパターン解析、多変量解析を行うことで使用者の運動意思を推定することが可能となる。筋電位波形の例を図2-1に示す。

ヒトの動作意思を推定することができる生体信号としては脳波と筋電位信号がある。しかし脳波は、測定すると頭部に複数の電極を配置しなければならず、身体的負担が非常に大きい。簡単に装着できる簡易式センサもあるが安定して脳波を測定することは困難である。したがって、日常生活で使用するには適していない。脳波に対して筋電位は、容易にセンサを装着するので身体的負担が小さく、安定して測定することも容易である。よって、表面筋電位信号は義手制御には適している。

![筋電位波形例](image)

図2-1 筋電位波形例
2.1.1 原理
筋線維の内側は、外側に対して、約-80mVの電位差がある。そして筋線維は、脳から発せられた命令を神経から電気的刺激として受けると、筋線維の細胞膜は脱分極を起こし、細胞の内外の電位が逆転する。これを活動電位と言う。そして、活動電位は筋線維に沿って双方向に伝播していく性質がある。この双方向に伝播している活動電位を測定したものを筋電位としている（cf. 図2-2）。筋電位は、筋肉が収縮した結果として発生するものではなく、筋肉を収縮させる原因として発生する。したがって、筋肉を外部から押して収縮させても圧電素子のように電位が発生するわけではない[35]。

2.1.2 測定法
この活動電位の性質を利用して、筋電位を測定する。図2-2のように、皮膚に電極を一定間隔、離して置きそれらを増幅器に接続する。活動電位が発生していない状態では、電位差がほとんど無いので増幅器の出力は、ほぼ0Vを示す。そこに、神経から筋線維に命令が来た活動電位が発生すると、まず、図2-2(a)の位置に活動電位があるときは、発生した電位差によって増幅器の出力は大きく正の値を示す。そして、活動電位が進み電極の間にいる時は電位差が無くなり、また増幅器の出力は0Vに戻る。そしてさらに、活動電位が進み図2-2(b)の位置に活動電位があるときは、増幅器の出力は大きく負の値を示す。あとは、活動電位が電極の下を通り過ぎると、再び0Vに戻り、これらの処理が短時間で連続して発生すると図2-1のような波形が発生する。
図2-2 筋電位の発生メカニズム
2.1.3 特徴量

筋電位信号は複数の筋肉から別々の時間に発生した筋電位が加算された筋全体の総合的な状態を測定しているので非線形な信号であるといえる。また筋肉の状態は常に変化しているので非定常な信号でもある。よって図2-3(a)に示すように、そのままの状態では解析に使うには扱いにくいため前処理として特徴量を抽出し、その特徴量を利用して筋電位信号の解析を行う。以下に本研究で用いる特徴量である実効値とパワースペクトルについて示す。

図2-3(a)の筋電位信号から求めたそれぞれの特徴量の波形を図2-3(b),(c)に示す。筋電位は、筋肉に入れた力の大きさに応じて振幅の大きさが変化するので実効値の大きさから、その筋電位を測定している付近にある筋肉がどの程度の力を入れているのかがわかる。また筋電位は、5Hzから500Hzの範囲にほとんどのパワーを有しているとされており[35]、解析にはこの範囲の周波数情報が使われることが多い。

(a) 実効値

本研究では2つの特徴量を使用する。1つ目は実効値（Root Mean Square: RMS）を使用する。RMSは、ノイズの多い信号、非周期性の信号や非正弦波の信号についても妥
当に測定できる。また、RMS は整流あるいは積分した EMG 以上に妥当な情報を保持している[36]。そして RMS は、運動単位の一連の活動電位の重疊による影響を受けない。よって、本研究では特徴量に RMS を用いる。以下に実効値を求める式を示す。

$$\text{RMS}(t) = \sqrt{\frac{1}{2T} \sum_{t=-T}^{T} e^2(t + \tau)}$$ （2-1）

ここで、$e(t)$ は筋電位信号で、(-T,T) が計算区間の範囲になる。対象とする区間を時間的にずらしながら実効値を計算することによって、実効値の時間変化を得る。本研究では、計算区間を 70ms とする。これは、筋電位信号が発生してから筋肉に力が発生するまでに電気力学的遅延（electromechanical delay : EMD）があるため、約 100ms の時間が存在する[35][37]。そこで操作者に時間遅れを感じさせないようにするには、この時間以内に動作識別を終わらせる必要がある。よって識別処理の計算時間を考慮して計算区間を 70ms とする。

(b) パワースペクトル

2 つ目の特徴量は、筋電位信号の伝播速度を示すパワースペクトルを使う。筋繊維中の信号が伝播する速度は筋繊維の種類によって違え、運動に使う筋肉によって異なる。本研究では最大エントロピー法（Maximum Entropy Method : MEM）[38]により筋電位信号のパワースペクトルを得ることでスペクトルの違いを得る。MEM は、フーリエ変換と比較して①短いデータからもスペクトルの推定が可能、②スペクトルの分解能が非常に高い、③雑音に対して比較的強いなどの利点がある。特に必要なデータが短くても推定が可能な点は、使用者に時間遅れを感じさせないようにすることに役立つ。フーリエ変換では安定した周波数情報を得るには長い時間のデータが必要になってしまう。短いデータで高い分解能を得るためとして、図 2-4 と図 2-5 に手のひらを「開く」動作の周波数情報を MEM とフーリエ変換で求めたそれぞれの波形を示す。

MEM は、Burg 法により生筋電データ x_t からスペクトル $S(\omega)$ を求める。まず次式により自己相関関数 R_t を求める。$E\{}$ は期待値である。

$$R_t = R(i\Delta t) = E\{x_k x_{k-i}\}$$ （2-2）

求めた R_t を次式に代入することで自己回帰係数 a_{mi}、定常白色雑音の分散 P_m を求める。ここで、m は自己回帰モデルの次数である。

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_m \\ R_1 & R_0 & \cdots & R_{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ R_m & \cdots & \cdots & R_0 \end{bmatrix} \begin{bmatrix} 1 \\ a_{m1} \\ \vdots \\ a_{mm} \end{bmatrix} = \begin{bmatrix} P_m \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$ （2-3）

式(2-3)から求めた a_{mi}、P_m を使用スペクトル $S(\omega)$ を次式より求めめる。
本研究では、次数 \(m = 30 \) とする。また実験的検証により本研究の識別対象動作では20Hzから270Hzの間に主にパワーを有していたので、パワー スペクトルは20Hzから270Hzまでを用いる。そして50Hz刻みに5分割し、それぞれの領域内で合計値を求め、20Hzから270Hzまでの間に5つの値を求める。安定した値を得るために64msごとに求めたスペクトル値の過去5回分の値で移動平均を求めて特徴量とする。

\[
S(\omega) = \frac{P_m \cdot \Delta t}{1 + \sum_{i=1}^{m} a_{me}e^{-j\omega \Delta t}}^2
\]

（2-4）

図2-4 「開く」動作の周波数情報 最大エントロピー法（データ数：64）

図2-5 「開く」動作の周波数情報 フーリエ変換（データ数：64）
2.1.4 筋疲労

筋肉を長時間使用していると筋電位信号は、筋疲労が原因となって振幅や周波数成分が徐々に変化する[39]。これらに関しては振幅の増大、徐波化や低周波側へのシフトなどの現象が報告されている。よって、義手の長時間使用に耐えられるように筋疲労による筋電位信号の変化に対応できる処理が必要になる。4章、5章において筋疲労を考慮した動作識別法を提案する。

2.2 実験装置

実験装置の構成を、図2-6に示す。筋電位の測定には、図2-7に示すバイオメトリクス社製の筋電アンプ SX230を用いる。仕様は表2-1に示す。入力インピーダンスは10TΩであり筋電位信号のような微弱な信号の測定に適している。3次のパーターワーカーフィルタ（20Hzのハイパスフィルタ）と8次の連立チェビシェフフィルタ（460Hzのローバスフィルタ）を内蔵している。測定するときは、株式会社ディケイエイチ社製アイソレータに筋電アンプを接続して電気的に絶縁する。

測定した筋電位をサンプリング周期1kHzでA/D変換し、パソコンへ入力する。A/D変換ボードは、株式会社インターフェイス社製LPC-36116（分解能16ビット、入力レンジ±10V、差動入力）を使用する。A/D変換した筋電位は、Microsoft Visual C++.NET2003により作製したアプリケーションを用いて波形を描画する。

また、本研究では動作識別による解析結果は、筋電義手へ出力せずにOpen-GLで作製したシミュレータに出力する。測定装置の写真は図2-8に、実験装置の写真は図2-9に、波形描画アプリケーションと筋電義手シミュレータは図2-10に、筋電義手シミュレータの動作パターンは図2-11に示す。

図2-6 実験装置の構成
表2-1 筋電アンプ仕様 SX230（バイオメトリクス社）

<table>
<thead>
<tr>
<th>項目</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>電極</td>
<td>乾式</td>
</tr>
<tr>
<td>入力インピーダンス</td>
<td>10T Ohms</td>
</tr>
<tr>
<td>ゲイン</td>
<td>60dB（1000倍）</td>
</tr>
<tr>
<td>周波数特性</td>
<td>20Hz - 460Hz</td>
</tr>
<tr>
<td>ノイズ</td>
<td><5μV</td>
</tr>
<tr>
<td>CRMM@60Hz</td>
<td>>96dB (typical 110 dB)</td>
</tr>
<tr>
<td>質量</td>
<td>約12g (ケーブル、コネクタ含む)</td>
</tr>
<tr>
<td>ケーブル長</td>
<td>1.25m</td>
</tr>
</tbody>
</table>

図2-7 筋電アンプ（写真）

図2-8 測定装置（株式会社ディケイエイチ）

図2-9 実験装置

図2-10 波形描画アプリケーション
図 2-11 筋電義手シミュレータの操作パターン (右手)

(a) 手のひら: 開く
(b) 手のひら: 握る
(c) 手首: 掌屈
(d) 手首: 背屈
(e) 手首: 回内
(f) 手首: 回外
2.3 測定位置

図2-12に3, 4, 5章で前腕部動作識別に用いる測定位置を示す。測定には、4チャンネルの筋電センサを使用する。測定位置は、右前腕部の肘から手首方向へ5cmの位置に90度間隔に電極を配置する。

図2-13に6, 7章で最適測定位置推定に用いる測定位置を示す。測定には、8チャンネルの筋電センサを使用する。測定位置は、右前腕部の肘から手首方向へ5cmの位置に45度間隔に電極を配置する。

測定位置をこれらの位置にした理由は、識別対象となる手のひらと手首の動作は、主に手首から肘の間にある総指伸筋、浅指屈筋、橈側手根屈筋、尺側手根伸筋、腕橈骨筋などを使用するため、この場所が筋電位信号を測定するのに適しているからである。図2-13の測定位置については、識別対象動作に使う特定の筋肉の位置で測定したりせず、腕に等間隔に配置した8個の筋電センサから最適な位置を選択する。前腕切断により動作に使用する筋肉の最大の筋収縮が得られる点であるモーターポイントの近くからの測定が困難になる可能性があるので特定の筋肉の位置を指定することが最適な測定位置につながるとは限らないからである。よって筋電センサを等間隔に配置して最適位置を推定する。

図2-12 測定位置 (4ch)
図2-13 測定位置 (8ch)
2.4 識別対象動作

本研究の識別対象動作を図 2-14 に示す。手のひらの動作は対象物を持たねば必要な「開く, 握る」,手首の動作は, 切断者へのアンケート[19]において必要性に対する結果が示している前後の屈伸動作 「掌屈, 背屈」と回旋動作「回内, 回外」を識別対象とする。特に回旋動作「回内, 回外」は日常生活動作を円滑に行うために重要な役割を果たす[20]ので必要である。また左右の屈伸動作「橈屈, 尺屈」は結果が低かったので識別対象としない。したがって, 計 6 動作を識別対象動作とする。

図 2-14 識別対象動作
以下に識別対象動作を行ったとき、図2-12の4箇所から測定した筋電位波形例を示す。

(a) 開く
(b) 握る
(c) 掌屈
(d) 背屈
(e) 回内
(f) 回外

図2-15 各動作の筋電位波形例
2.5 解析システム概要

3, 4, 5 章で行う動作識別処理の流れを図 2-16 に示す。測定した筋電位信号を、パターン解析で扱いやすくするために「前処理」を行い、特徴量として実効値や周波数情報を抽出する。そして、特徴量をパターン解析（ニューラルネットまたはファジー推論）へ入力して動作識別を行う。最後に識別結果を筋電義手シミュレータに出力し前腕部動作識別実験を行う。

図 2-16 動作識別処理の流れ

6, 7 章で行う最適測定位置推定処理の流れを図 2-17 に示す。特徴量抽出までは上記の動作識別処理と同様に行う。そして、特徴量に対して「重回帰分析」や「判別分析」などの多変量解析による変数増減法を行い、識別対象動作を判別するうえで影響力の高い測定位置を選択していき最適測定位置の推定を行う。被験者ごとに選択された最適位置から測定した筋電位信号により上記のパターン解析による動作識別法を用いて識別精度の確認を行う。

図 2-17 最適位置推定処理の流れ
第3章 前腕部動作識別のための
自己組織化マップの最適マッピング

3.1 背景・目的

入力データ間の類似度を自動的に見いだし、似た入力同士をマップ上の近くに配置することができるから動作識別に自己組織化マップ（Self-Organizing Map : SOM）を使う。通常の SOM は、入力データからマップを学習するときマップ全体のユニットを使って同じ特徴を持ったデータ群ごとに分類する（cf. 図3-1 (a)）。このときデータ群の境界にあるユニットは隣接しているデータ群にあるユニットの両方の情報を学習することになり、そのためデータ群の境界で誤認識してしまう可能性がある。そこで本章は、同じ動作の学習結果はより狭い範囲の領域に集中させ、各動作の学習結果群を十分に分散させることができる自己組織化マップの最適マッピングを提案する。提案手法により図3-1 (a)の通常のマップを最適化したマップを図3-1 (b)に示す。さらに、最適化したマップの特性を利用して動作の誤認識を抑えながら計算量を減らすこともできる動作識別法を提案する。動作識別システム概要を図3-2に示す。

![図3-1 自己組織化マップ例](image1)

![図3-2 動作識別システム概要](image2)
3.2 自己組織化マップによる動作識別法

3.2.1 トーラス型自己組織化マップ

通常の自己組織化マップは、マップの端に勝者ユニットが選択された場合、学習対象となる近傍範囲内のユニットが途中で途切れてしまい学習が不均等になる現象が発生する。このような問題点を回避するために、本章ではトーラス型自己組織化マップを用いる。トーラス型自己組織化マップは、図3-3に示すようにマップ端のユニットが上下左右の対称に位置するユニットと連結していることにより、学習範囲がマップ端で途切れないことなく学習できる。よって上記の問題を回避することができる。

本章ではマップ全体のユニット数は50 x 50とし、各ユニットが持つ情報量は筋電センサーの数と同じ4次元とする。各動作の学習データは、4チャンネルのRMSを一組として、それぞれ複数組（開く：10組、握る：10組、掌屈：3組、背屈：3組、回内：8組、回外：8組）で用いる。動作ごとに学習データ数が異なるため、実験により特徴的な筋電位が発生する動作は密集してマッピングされるため多くの学習データが必要なかったので学習データ数を少なくなった。学習率は0.01から始まり、以下の式により学習回数が増えるごとに減少する。右辺のαは学習率の初期値（0.01）、tは現在の学習回数、Tは総学習回数を示す。本章は、T = 8000回とする。

\[
\alpha = a \left(1 - \frac{t}{T}\right) \quad (3-1)
\]

学習対象となるユニット数は勝者ユニットを中心に20 x 20から始めて式(3-1)の右辺を用いて（a = 20）減少させる。学習率、学習回数は、マップ全体のユニット数が最小値で学習が収束するように実験により試行錯誤的に設定した。

本章では、マップの学習終了時に入力した学習データが選択したユニットに対してデータ群ごとに色をつけて学習収束点とする。また、マップ上でユニットに隣接している周囲8つのユニットとの4次元情報のユークリッド距離をそれぞれ求め、それらの合計値を隣接する周囲のユニットとの情報差とする。情報差が大きいユニットはマップ上では黒く表示し、小さいユニットは白く表示する。

図3-3 トーラス型自己組織化マップ
3.2.2 自己組織化マップの最適化マッピング

通常の学習によるマッピングではマップ全体のユニットを使って入力データと同じ特徴を持つデータ群に分類する。このときデータ群の境界にあるユニットは隣接しているデータ群にあるユニットの両方の情報を学習することになる。データ群の境界の例として、図3-5に2種類のデータを学習したときのマップを示す。データA（赤）とデータB（青）は左右に別れ、縦目に両方のデータを学習した境界線（紫）ができる。境界線（紫）のユニットは、隣接している両方のユニットの情報を学習しているため、隣接しているどちらのデータ群にも属さず情報差が大きくなる。そこで、マップを学習過程に隣接する周囲のユニットとの情報差が大きいユニットが現れた場合、そのユニットはデータ群の間にできた境界線のユニットとする。

そして、「データ群の境界線にあるユニットの情報」を「識別対象動作の学習用データ」と一緒に入力データとして学習してマッピングする。データ群を区切っていた境界線のユニットの情報により境界線周辺のユニットが学習されることになり境界線が広がる。境界線が広がると隣接する周囲のユニットとの情報差が小さくなることで「データ群の境界線にあるユニットの情報」は入力データから外される。以降、学習が収束するまで隣接するユニットとの情報差が大きいユニットが現れることに、そのユニットの情報は入力データとして学習する。これらの最適マッピングの処理の流れを図3-4に示す。

図3-4 最適マッピング法

通常のマッピングでは境界線が、データ群の間に谷のように続いている(c.f.図3-5)に対して、最適マッピングでは境界がデータ群の間に滑らかな坂のように広がることとなり、境界線の周辺に境界エリアが作られる(c.f.図3-6)。境界が広がることにより各データ群が広く離れることになる。マップ全体の広さは変わらないため、境界が広が
ことによって各データ群エリアは縮小して一ヶ所に集中することになる。したがって、同じ動作の学習結果は狭い範囲に集中することになり各動作の学習結果群を十分に分散させることができるので、同じ動作の学習結果は群内で分散を小さくし、各動作の学習結果は群間で分散が大きくなる。よって、データ群が隣接しなくなるので誤認識が抑えられると推測できる。

図3-5 通常マッピングの情報差

図3-6 最適マッピングの情報差
3.2.3 近傍範囲による動作識別

最適化したマップの特性を利用して動作の誤認識を抑えながら計算量を減らすことともできる動作識別法を提案する。最初に、何も動作が識別されていないときはマップの全ユニットの中から入力データとの情報差（ユークリッド距離）が最も小さいユニットを選択する（cf. 図3-7（a））。選択されたユニットが動作の学習収束点に近ければ動作を認識する。

次に、同じ動作を続けている間は入力データによりマップ上から選択されるユニットは、近い位置が選択され続けるので、動作識別以降は入力データから選択対象となるユニットは、前回選択されたユニットの近傍範囲に限定する（cf. 図3-7（b））。近傍範囲の中に入力データに対して情報差が小さいユニットがあれば選択し、選択されたユニットが動作の学習収束点に近ければ動作を認識する。

以降、動作が識別されている間は入力データに対して選択されたユニットの近傍範囲が限定されていき、選択対象ユニットは次々に移動していく（cf. 図3-7（c））。そのとき、限定された近傍範囲に入力データとの情報差が小さいユニットが存在しない場合は何も認識されず、次の入力データはマップの全ユニットから情報差が最も小さいユニットを選択することになる。入力データに対して選択対象となるユニットを近傍範囲に限定することで、動作中に別の動作が誤認識されることを抑えることができる。また、選択対象ユニットを近傍範囲に限定することによりマップの全ユニット（50 x 50）から情報差の最も小さいユニットを選択する場合より計算量を減らすことができる。本章では、動作識別時に限定する近傍範囲は選択されたユニットを中心に9 x 9とする。

通常のマップでは、各動作群が隣接するので限定した近傍範囲内に隣の動作群が含まれてしまう可能性がある。そこで、最適マップのように同じ動作の学習結果は一ヶ所に集中し、各動作の学習結果群は離れて分布していた方が良い。
3.3 最適化マッピングによる動作識別能力の実験

3.3.1 実験方法

本章での測定位置は、被験者の右前腕部に4チャンネルの筋電センサを90度間隔で取り付ける（cf. 図2-12）。そして識別対象とする動作は、手のひらを「開く」、「握る」、手首の「掌屈」、「背屈」、「回内」、「回外」の6種類の動作（cf. 図2-14）とする。

これらを使っての提案手法の精度を確認するための実験として識別対象の6種類の動作を、それぞれ50回ずつ行う。その際、動作中に別の動作が一回でも認識されてし
まったら誤認識とする。これらの実験を通常マッピングと最適マッピングの両方で実験を行い、識別精度を比較する。通常マッピングと最適マッピングの実験で使用する筋電位信号のデータは同じものを用いる。今回の実験は、3人の健常者（被験者 A、B、C）で行い、識別させようとしている動作以外のことに力が入ってしまわないように、腕には負荷を与えないようにして行う。

3.3.2 実験結果および考察

3人の被験者の筋電位信号から学習したマップを図 3-8 と図 3-9 に示す。図 3-8 は通常のマップを、図 3-9 は最適化したマップを示す。マップ上で色がついている点は、それぞれ開く(青)、握る(桃)、掌屈(黄)、背屈(紫)、回内(橙)、回外(緑)を示す。マップを最適化することにより全ての被験者で、同じ動作の学習結果は一ヶ所に集中し、各動作の学習結果群は離れてマッピングされた。これらのマップを用いて行った動作識別実験の結果を図 3-10 に示す。最適マッピングを行うことにより、通常マッピングより識別率が 0.6 ～ 9.3% 向上し、平均 88%の識別率が獲得できた。

図 3-8 実験結果（通常マップ）
図 3-9 実験結果（最適マップ）
被験者 C は他の被験者と比べ、識別率の向上が大きい。被験者 C は被験者 A、B と比べ、筋電位を発生させることに熟練していないため、動作ごとに異なるパターンの筋電位を安定して発生させることができていなかった。そのため通常マップでは動作群の境目で動作を誤認識していたが、マップを最適化することにより動作群の境目で発生していた誤認識を回避することができた。また被験者 A は筋電位を発生させることに熟練していたため、通常マップにおいても動作群の境目で動作を誤認識することが少なかったため識別率の向上は 0.6% と小さかった。

図 3-11 に被験者 A が手のひらを開いたとき「通常マップ」では誤認識が発生した筋電位信号を「最適マップ」に用いることにより正しく認識ができたときの実験結果を示す。図 3-11 (a)(b) は同じ筋電位信号のデータを入力しており、マップ上には入力データが正しく識別できたとき赤くプロットし、誤認識したとき黒くプロットしている。図 3-11 (a)の通常マップでは各動作群が隣接しているため、開く（青）の隣にある握る（桃）を誤認識した。誤認識した点（黒）に最も近い点は握る（桃）であり座標間のユークリッド距離は 4.24 であった。最も近い開く点までの距離は 5.83 であり握る点より離れていた。動作群が隣接しているために動作認識が動作群の境目で行われると隣接する動作の点までの距離の方が近いときがあり誤認識が発生してしまう。図 3-11 (b) の最適マップでは各動作群が離れており、さらに識別開始後は選択されたユニットの近傍から選択を行っているため誤認識が発生しなかった。
3.3.3 姿勢変化による負荷に対しての検証

姿勢によっては重力に逆らって腕の位置を維持しようとすることが腕に対して負荷になる。そこで、イスに座っているとき図 3-12 に示すように腕を床に対して垂直の状態から水平になるように肩の角度を 3 段階に分けて変えて最適マップによる動作識別実験を行い識別率の変化を検証する。床に対して水平の状態では、姿勢を維持するため腕に力を入れ続けなければならないが、腕が負荷を受けることになる。

図 3-12 肩角度による腕への負荷

図 3-13 に実験結果を示す。被験者ごとに個人差はあるが肩角度を床に対して水平方向へ変えることにより識別率が減少しており、特に 45 度のときは大きく減少していた。肩角度 45 度のときは姿勢を維持しようとするために入れる力の調節が難しく個人差が
出たと推測できる。また切断者の場合は、脛に約 1kg の筋電義手を身に付けることになるので姿勢による負荷はさらに大きくなる。したがって、姿勢による負荷は考慮する必要がある。

図 3-13 実験結果（肩角度による識別率の比較）

3.3.4 今後の課題

本章は、筋電応答に基づく前腕部動作識別のためのトーラス型自己組織化マップの最適マッピング法を実現した。しかし、最適マッピングに関してはいくつか課題も存在する。

・ 通常のマッピングより高い識別率を得られたが、データ群エリアの縮小や動作識別のときにマップからの選択領域を限定したので汎化能力が低下した可能性がある。よって、最適な縮小度を検討しなければならない。

・ 本章ではマップの広さを 50 x 50 とした。マップをさらに広くすることで動作群を離すことができ識別率が向上できる可能性がある。しかしマップを広くすぎてしまうと動作群が隣接しなくなり提案手法によりマップを最適化できる効率が低下してしまう。マップが広いと動作識別するとき入力データと各ユニットとの情報差を確認する計算量が非常に多くなるため可能な限りマップは小さくした方が良い。そこで高精度に動作識別が可能で最小のマップの広さを検討する必要がある。

・ 最適マッピングを行うことにより識別率が向上できたが、筋電義手使用時の安全性を考えるとさらに識別率を向上させる必要がある。最適マップによる実験では筋電位信号を安定して発生できなかったとき、誤認識が発生するときがあった。本章で
は安定した状態の筋電位信号をマッピング用の入力データとしたため、上記のような誤認識が発生したと推測できる。そこで腕に負荷を与え安定していない状態で動作を行ったときの筋電位信号も学習データに追加することで識別率を向上させる必要がある。

3.4 まとめ

本章では、筋電位信号に基づく前腕部動作の高精度識別のためのトーラス型自己組織化マップの最適マッピング法を提案した。通常のマップは、データ群の境目にあるユニットは隣接しているデータ群にあるユニットの両方の情報を学習することになり、データ群の境目で誤認識してしまう可能性がある。そこで本章では、同じ動作の学習結果はより狭い範囲の領域に集中させ、各動作の学習結果群を十分に分散させることができる自己組織化マップの最適マッピングを行った。さらに最適化したマップの特性を利用して、動作の誤認識を抑えることができる動作識別を行った。そして、最適マッピングを行うことにより通常マッピングより識別率が0.6〜9.3%向上し、平均88%の識別率が獲得できた。
第4章 簡潔なニューラルネットによる前腕部動作識別

4.1 背景・目的

前章の手法では識別率の向上ができたが、動作識別を行うために常に多数にユニットに対して入力データと比較処理を行わなくてならないため、計算量が多くなり、簡潔なシステムと言えなかった。また、従来の筋電位信号に基づくニューラルネット用いた前腕部動作識別[4][7]においても、識別精度の向上のために筋電位信号の特徴抽出処理やニューラルネットの構造が複雑になる傾向がある。それでは学習や出力パターンを算出するための計算量が多くなってしまい、応答性を良くしようとすると演算能力の高い処理装置が必要になり消費電力や価格の上昇につながる。また誤差逆伝播法を用いる多層構造ネットワークで中間層のニューロンと重みを削減することで汎化能力が向上することが確認されている[41]ことから、ニューラルネットは基本的に中間層のニューロン数を少なくすると汎化能力が増し、未学習のデータに対しても識別精度が高くなる。

そこで本章では、ニューラルネットの構造を複雑化せずに高い識別精度を獲得する手法について述べる。その方法として、ニューラルネットへの「入力データ」と「学習用データ」の最適化法について検討し識別精度の確認をする。また、使用中に筋疲労などが原因となって筋電位信号の特徴が変化することに対するロバスト性向上の方法を検討する。さらに、使用する筋電センサの数を減らしても高い識別精度が得られるかを実験的に検証する。動作識別システムの処理の流れを図4-1に示す。

次節より4.2節「簡潔なニューラルネットによる動作識別」、4.3節「筋疲労時のロバスト性向上」、4.4節「最少電極数の筋電位信号による動作識別」について示す。

図4-1 動作識別システム概要
4.2 簡潔なニューラルネットによる動作識別法

ニューラルネットは、図4-2に示す3層階層構造の誤差逆伝播（Back Propagation）を使用する。誤差逆伝播は、入力データに対して出力させたいデータパターンを教師信号として学習させることができる。そこであらかじめ識別対象動作ごとの筋電位信号の特徴量を学習させておけば、新たに測定した筋電位信号の特徴量をニューラルネットへ入力することで、ユーザがどのような動作を行っているのか推定することができる。

図4-2 階層型ニューラルネット

4.2.1 ニューラルネットへの入力データ最適化法

測定した筋電位信号は、筋電アンプで増幅されているとはいえ値は非常に小さい。そのため、各動作での筋電位の違いがわずか（数mV）しかない。識別対象である各動作間で筋電位の違いがわずかしかないと汎化能力からニューラルネットでは誤認識の発生原因になる可能性がある。この筋電位を正規化する方法として、これまでの研究では、測定した筋電位の全CHの和が1になるようにする方法[42]やあらかじめ測定しておく最大随意筋収縮時の値を使う[4]などがある。本節では、筋電位をA/D変換して特徴量の実効値を抽出してから、値を増幅することにより各動作で筋電位の違いを大きくする（数V）ことでスケールの最適化をし、各動作を確実に分類できるようにする。

4.2.2 誤差逆伝播の学習用データ最適化法

学習処理を簡潔にするため、学習用データ数を最適化する必要がある。そこで本節では、あらかじめ測定しておく各動作のn回分の筋電位の実効値から求めた平均値を学習用データとして誤差逆伝播を学習させる。これは、ニューラルネットの汎化能力を利
用している。実際の動作での筋電位の実効値が，学習に使用したデータより値がある程度違っていても，汎化能力から想定している出力パターンを得ることができる。また筋電位は，同じように力を入れ続けていても一定の値を維持するわけではなく値は上下する。そこで学習対象の動作の実効値を複数回分取り出して，それらの値の平均値を学習用データとする。学習用データから見れば測定した筋電位の実効値は，学習用データに一致することはほとんどないが，ニューラルネットの汎化能力から認識することができる。例として図4-3に手のひらを開く動作を維持して力を入れている時の波形（実線）を示す。図4-3では，\(n = 40 \)回分の実効値の平均を算出し（破線），これを学習用データとされている。この方法であれば，1つの動作に対して多くの学習用データを用意しなくてもすむ。多くの研究では，1つの動作に対して学習用データを10種類以上用意しているが，本節では1種類にする。

また，学習には識別対象の動作のほかに，完全に力を抜いた状態である「無動作」時の筋電位も1種類の動作として学習用データを用意する。学習用データには，安定した値を取得できるように動作を一定に維持した状態で測定した筋電位を用いる。最終的に学習用データは6動作と無動作の計7種類になり，学習処理が簡潔に行える。

図4-3 学習データの最適化

4.2.3 動作識別能力実験

本節での測定位置は，被験者の右前腕部に4チャンネルの筋電センサを90度間隔で取り付ける（cf. 図2-12）。そして識別対象とする動作は，手のひらを「開く」，「握る」，手首の「掌屈」，「背屈」，「回内」，「回外」の6種類の動作（cf. 図2-14）とする。実験
に使用するネットワーク構成は，入力層はチャンネル数分の4個，中間層は5個，出力層は6個とした．中間層の数は，設定した学習終了条件でローカルミニマを起こさずに学習が収束できる最も少ない数になるように試行錯誤的に設定した．従来の研究[4]で，誤差逆伝播の構成を入力層が6個，中間層が2層でいずれも10個，出力層が6個，またElman's Networkで入力層が6個，中間層が150個，出力層が6個で実験を行っているものがあるが，これらと比較すると提案手法は簡潔な構造になっている．

出力層には，手のひらを「開く」，「握る」，手首の「掌屈」，「背屈」，「回内」，「回外」計6種類の動作を割り当てる．学習には6種類の動作のほかに，完全に力を抜いた状態である「無動作」時の筋電位も1種類の動作として加えて全7種類の学習用データを用意する．各動作に対応する教師信号は表4-1のようにになる．そして実験により6動作の全チャンネルで平均値が安定して得られたデータ数n = 40回分の実効値の平均を学習用データとして誤差逆伝播で学習させる．実験終了条件は，2乗誤差平均Eが10^{-4}以下になったときとする．また，今回の実験では動作を認識したとする出力層の閾値は「0.7」に設定する．学習終了時の出力層の値は1に限りなく近い値なので，その値に比べて小さく設定することで学習用データにわずかでも近い値の筋電位が測定されると動作を識別できるようにして汎化能力の向上をねらう．

これらを使っての提案手法の精度を確認する為の実験内容は，出力層に割り当てた6種類の動作を，それぞれ50回ずつ行う．そして誤差逆伝播による識別結果が，実際に動作に対して正しく識別できている割合を確認する．そのとき動作中に別の動作が一回でも認識されると誤認識とする．そして，増幅率を1，10，20，30，40，50，60，70倍の8種類で実験を行い，実効値を増幅することによる識別率の変化を確認する．そのとき，識別に使用するデータは各識別対象動作を50回ずつ行ったときの筋電位信号の実効値を保存しておく，その値を増幅して使い，各増幅率の実験を行う．また，学習用データも増幅無しのときに作成したものを増幅して使用する．

誤差逆伝播の重みの初期値は全増幅率で同じ値を使って学習させ実験を行い，この重みの初期値はランダムに変えて10回実験を行う．また，学習率等のパラメータは全て同じ値を使う．今回の実験では，2人の健常者（被験者A（31歳，男性）, B（23歳，男性））で行い，認識させようとしている動作以外のことに力を入らせていないように，腕には負荷を与えないように行う．

<table>
<thead>
<tr>
<th>動作</th>
<th>出力層</th>
</tr>
</thead>
<tbody>
<tr>
<td>開く</td>
<td>1 0 0 0 0 0</td>
</tr>
<tr>
<td>握る</td>
<td>0 1 0 0 0 0</td>
</tr>
<tr>
<td>掌屈</td>
<td>0 0 1 0 0 0</td>
</tr>
<tr>
<td>背屈</td>
<td>0 0 1 0 0 0</td>
</tr>
<tr>
<td>回内</td>
<td>0 0 0 1 0 0</td>
</tr>
<tr>
<td>回外</td>
<td>0 0 0 0 1 0</td>
</tr>
<tr>
<td>無動作</td>
<td>0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

表4-1 教師信号
4.2.4 実験結果

実験結果を表4-2、図4-4に示す。これらの結果は各増幅率で10回の識別率の平均値（Discrimination Rates: DR）と標準偏差（Standard Deviation: SD）を示している。

「各増幅率の結果」を「増幅無し（1倍）の結果」に対してt検定を行い全増幅率のときにF水準で有意差が有することが確認できた。特に30倍のとき2人とも識別率が高かった。実験により実効値を増幅してからニューラルネットに入力することで、ネットワークの構造を複雑にしなくても高い識別精度を得られることが確認できた。

「4.2.3 動作識別能力実験」で挙げた従来の研究[4]の識別率は、誤差逆伝播は74.3%，Elman’s Networkは83.7%であった。本節では、これらより簡潔な構造で高い識別精度であった。また本節と同等の識別率を得ている研究[7]では、特徴量抽出に高速フーリエ変換を用い動作識別に主成分分析とニューラルネット（入力層3個、中間層20個、出力層4個の誤差逆伝播）を用いており、本節の識別システムの方が簡潔になっている。

また、増幅することで大きな力を出さなくても動作を認識できるようになることが実験により確認できた。これは、わずかな動きによる筋電位でも増幅されることにより反応しやすくなったものと推測できる。しかし、増幅率を上げ過ぎると、今度は識別率が少し低下している。これは、実効値の増幅率が大き過ぎるため、わずかな動きによる筋電位の変化でも大きくなり過ぎて過剰に反応してしまうから推測できる。特に、発生する筋電位が大きい動作は、この影響を強く受けていた。この誤認識を回避するには、実効値に対して学習用データに近い値の閾値を設定して、閾値以下の場合はニューラルネットによる識別結果を無効にするといった方法が推測できる。

今回の実験では動作を認識したとする出力層の閾値は「0.7」に設定したが、この閾値を、各動作の学習が終了したときの出力層の値に限りなく近い値にして、測定した筋電位が学習用データに近い値でないと認識できないようにするといった方法も考えられる。今回は、増幅による識別精度の変化を確認することが目的であったため閾値の操作は行わなかった。

<table>
<thead>
<tr>
<th>Gain(x)</th>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>74.7</td>
<td>82.9</td>
<td>89.1</td>
<td>95.5</td>
<td>95.7</td>
<td>94.0</td>
<td>89.6</td>
<td>85.1</td>
</tr>
<tr>
<td>SD</td>
<td>3.3</td>
<td>2.1</td>
<td>2.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.0</td>
<td>2.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Subject B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>57.8</td>
<td>71.6</td>
<td>83.1</td>
<td>93.4</td>
<td>88.2</td>
<td>84.3</td>
<td>80.7</td>
<td>75.2</td>
</tr>
<tr>
<td>SD</td>
<td>6.5</td>
<td>7.2</td>
<td>5.5</td>
<td>3.4</td>
<td>2.9</td>
<td>3.3</td>
<td>3.0</td>
<td>4.4</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>66.2</td>
<td>77.2</td>
<td>86.1</td>
<td>94.4</td>
<td>91.9</td>
<td>89.2</td>
<td>85.2</td>
<td>80.1</td>
</tr>
<tr>
<td>SD</td>
<td>4.9</td>
<td>4.7</td>
<td>4.2</td>
<td>2.7</td>
<td>2.5</td>
<td>2.7</td>
<td>2.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>
4.2.5 考察

(A) 増幅の効果

実験により誤認識が発生するタイミングを調べた結果、動作の始めと終わりに集中していることがわかった。そして特に、発生する筋電位の値大きい動作の「動かし始めと終わり」、つまり、筋電位が「発生し始めと終わり」の値が小さい時に、他の「発生する筋電位の値が小さい動作」を誤認識してしまうことが分かった。

図4-5に増幅無しのときに発生した誤認識の例を示す。手首を背屈し始め、手のひらを開く動作を誤認識したときの波形である。これは、上記のように筋電位の発生し始めに、発生する筋電位の値が小さい動作が誤認識している状態にある。筋電位が上昇中に他の動作（開く）の学習値に近づいてしまい誤認識している。図4-5にあ るように誤認識時は、各動作の測定値と学習値の差はわずかしかない。この程度の差では、ニューラルネットの汎化能力から学習値の動作（開く）を誤認識してしまう可能性がある。同じ動作でも、図4-6のように実効値を50倍に増幅していると誤認識は発生しなかった。これは、同じ周期で筋電位の実効値を求めていても増幅している分だけ、手のひらを「開く」動作の学習値と、手首を「背屈」する動作の測定値との差が増幅されているため、ニューラルネットが誤認識を起こさない範囲まで差が広がったためと推測できる。図4-6に、各動作の測定値と学習値が最も近づいたときの差を示す。このとき、出力層の値は「0.7」に近い値になるときはあるが誤認識は発生しない。
図 4-5 増幅無し波形例（「開くの学習値」と「背屈の測定値」）（誤認識）

図 4-6 50 倍増幅の波形例（「開くの学習値」と「背屈の測定値」）（正認識）
(B) 増幅による重みの変化

学習が終了したときの重みの絶対値の平均を求め、増幅無しのときを 1 として増幅することによる重みの大きさの変化を図 4-7 に示す。式 (4-1) より入力層と中間層の間の重みの絶対値の平均値 W_1 を、式 (4-2) より中間層と出力層の間の重み絶対値の平均値 W_2 を求める。全ての増幅率のときに使用した重みの初期値は同一のものである。

\[
W_1 = \frac{1}{I+J} \sum_{i} \sum_{j} \left| W_{ij} \right| \tag{4-1}
\]

\[
W_2 = \frac{1}{J+K} \sum_{j} \sum_{k} \left| W_{jk} \right| \tag{4-2}
\]

入力データを 10 倍にしたときは、重みの平均は 0.4 程度まで落ちているが、その後は増幅率を上げても大きな変化はありません 40 倍辺りで変化はほとんどなくなっている。この 40 倍は識別率が高い値を示した増幅率と同じである。このような重みの平均が安定し始めたときの増幅率と、良い識別率を得ることができた増幅率が同一である傾向は、2 人の被験者で見られた。

図 4-7 より実効値を 40 倍に増幅しても、W_1 は約 0.17 倍にしかなっていないことがわかる。増幅することで入力データが数値上大きくなっているにも関わらず、入力データと直接演算する W_1 は増幅率に合わせて減少していなくて、40 倍辺りで変化が止まっている。これは入力空間でデータの分布が変わっていなくても増幅することでスケールが拡大され、6 種類の動作を識別するには最適なスケールになったためだと推測できる。スケールが小さいと図 4-5 のように他の動作の学習データに近づきやすくなる。また、40 倍以上増幅率を上げても重みの大きさの変化が小さいのは識別を行うのに十分なスケールに拡大した為だと推測できる。よって、増幅することはスケールの最適化を行うことになる。
また、実験により確認できた増幅率を上げていくとわずかな動きによる筋電位でも動作を認識しやすくなったことは、増幅率を上げていても重みの大きさに変化がほとんどないためだと推測できる。入力データは70倍になっても重みの大きさは40倍のときとほとんど変わらないので、わずかな動きの筋電位でも認識できるのだと推測できる。

(C) 今後の課題

本節では、中間層のニューロン数は試行錯誤的に決定したが、ニューロン数を最小にすることが、必ずしも汎化能力に対して最適とは限らないため、今後は情報量基準などを利用して最良の個数を推定してから中間層のニューロン数を決定する必要がある。また、汎化能力の向上をねらって出力層の閾値を「0.7」に設定したが、増幅率を高めたときには誤認識発生原因の1つになってしまった。そこで、出力層、実効値ともに閾値の設定について検討する必要がある。

ニューラルネットで未学習データに対する汎化能力を向上させる方法は、基本的に「学習用データを豊富にする」か「ネットワークの自由度を制限する（中間層のニューロン数を制限する）」の2つの方法がある。学習用データを豊富にすれば、汎化能力を確保できるが、学習を収束させるためにネットワークのニューロンが多く必要になり構造が複雑になってしまう。それでも計算量が増えること、そこで提案手法のようにネットワークの自由度を制限して（構造を簡潔にして）確保することで計算量を抑えることができ、システム全体を簡潔にしていくことができる。これは多くの片側前腕切断者が現在の筋電義手に望む改善点として挙げている「価格」に対応できると推測できる。

本節の実験では、識別対象の動作以外の部位に力が入らないように行っていた。しかし、日常生活動作をする時、特に道具を使う場合は、他の部分にまったく力を入れずに腕のみを動かすことは難しい。よって今後は、いろいろな状況に対応できるように、腕に日常使う道具などを重さとして付けたり、体の姿勢を変える、他の動作と組み合わせるなどして腕に負荷をかけた状態での識別精度の確認を行う必要がある。

筋電義手を制御する際、動作を誤認識してしまうと非常に危険をともなう場合がある。たとえば、図4-5に示してあるような誤認識をした場合、手首を曲げようとして手のひらが開いてしまうと、そのとき何かを持っていった場合、落としてしまう可能性がある。また、義手が想定外の動きをしたら使用者は不快に感じて筋電義手の使用を避けるようになってしまうかもしれない。上記の問題を避けるためにも筋電義手の制御を行うには、まず動作識別の精度を上げておく必要がある。
4.3 筋疲労時のロバスト性向上

4.3.1 筋疲労に対する対策

筋肉を長時間使用していると筋電位は、筋疲労などが原因となって徐々に変化する[39]。そのため、使用前に学習したニューラルネットの重みでは、うまく動作を識別できなくなる可能性がある。使用中に変化した筋電位に合わせて学習し直そうとしても、識別システムは被験者の意図した真の動作を知ることができないため、正しい教師信号を与えることができない。よって、筋疲労などの要因を考慮した動作識別をする必要がある。これまでの研究では、ニューラルネットでの識別結果から求めたエントロピーを使って識別結果が正しいかを判断して使用中に学習し直す方法[46]がある。

そこで本節では、正しく識別されたと判断する尺度として L 回を使う。L 回連続で同じ動作が識別されたら、その識別結果は正しいとして扱う。これは「3.2 実験結果(B)増幅の効果」に示されるように誤認識の発生は、筋電位信号の発生し始めと終わりの一瞬に集中しており複数回連続することは、殆どないと推測できるからである。図 4-8 に、誤認識が発生した時のニューラルネットの出力例を示す。その際、L 回目の筋電位の実効値（L_times_data）と今まで使っていた重みの学習時に使用した学習用データ（last_data）とで平均を求める。この平均値を再学習用データ（relearning_data）とする。

\[
relearning_data = \frac{(last_data + L_times_data)}{2}
\] (4-3)

そして、再学習用データを使って L 回連続して識別された動作を教師信号として与え再学習する。通常、学習処理を行うときは、重みの初期値はランダム値を設定するが再学習のときは、今まで使っていた重みを初期値として読み込んで学習する。その際、学習がローカルミニマになってしまったら、重みは修正しない。再学習が終わったら、再度 1 から数え直して、また L 回連続で同じ動作が識別されたら再学習をする。

図 4-8 誤認識発生時のニューラルネットの出力例
4.3.2 再学習による動作識別能力実験

実験内容は「4.2.3 動作識別能力実験」を、腕を休めずに 3 回連続で行い識別精度の変化を確認する。再学習を行う条件は、$L=1\sim5$ の 5 種類で行い、増幅率は 2 人とも識別率が高かった 30 倍に固定する。

4.3.3 実験結果および考察

実験結果を図4-9、図4-10に示す。再学習を行い続けることで、再学習を行わないときと比べて、筋疲労が発生しても識別率の低下が抑えられることが確認できた。$L=1\sim4$ では 2 人とも 90%以上を保っているが、$L=5$ のときは再学習無しと比べると低下を抑えることができているが大きく低下している。これは、再学習を行う条件を $L=5$ 回としたため間隔が長くなり、変化した筋電位に対応した重みを学習し終える前に動作が終了してしまうために、徐々に筋疲労に対応しきれなくなってしまっていると推測できる。本節では $L\times\text{data}$ と last_data とで平均を求めていたために徐々にしか筋疲労に対応できなかったと推測できる。そこで、再学習用データを作るときに $L_\times\text{data}$ の割合を大きくすることで筋疲労への対応が早くなり、さらに識別精度の低下を抑えることができるのでないかと推測できる。

図4-9 再学習有りと無しの実験結果（被験者 A）
本手法により筋疲労が原因となって徐々に変化する筋電位に対応できることが確認できた。しかし、筋疲労に完全に対応させてしまうと、筋電義手を外して疲労を取ってから再び義手を使おうすると、筋疲労状態でニューラルネットが学習してしまっているため、今度は筋疲労のない通常時の識別精度が低下してしまう可能性がある。そこで、どの程度筋疲労に対応させるべきか、そして疲労が取れた後の対応についても検討する必要がある。

再学習処理は、動作識別を行いながら同時に行っている。本節の実験はＰＣで行ってい るので演算による負荷は問題にならなかったが、筋電義手に本手法のシステムを搭載するとき最適な演算装置やメモリ容量などを検討する必要がある。

筋電義手を制御する際、動作を誤認識してしまうと非常に危険を伴う場合がある。そこで筋電義手の制御を行うには、長時間使用して状況が変化しても高い動作識別精度を保てるようにする必要がある。
4.4 最少電極数の筋電位信号による動作識別

4.4.1 最少電極数の実験による検証

従来の研究では、多数チャンネルによる筋電位信号から前腕部の動作識別に高い識別精度で実現している。しかし、コスト面や前腕の切断状況によっては多くの筋電センサの使用が難しい場合があると考えられることで、少数チャンネルで高精度に動作識別ができるほうが良い。そこで本節の目的は、使用する筋電センサの電極数を少なくしても高精度に前腕部の動作識別を行えるようにすることとし、そのための筋電位信号の特徴量抽出方法や測定位置についてニューラルネットによる識別手法をもとに実験的に検証する。

4.4.2 実験方法

使用する筋電センサの電極数を少なくしても高精度に前腕部の動作識別を行えるようにするためにニューラルネットによる識別手法をもとに実験的に検証する。まず、特徴量に実効値のみを使い4つの筋電センサを使用して動作識別を行う（実験内容は「4.2.3 動作識別能力実験」と同様）。次に、図4-11に示す3つの筋電センサで各組合せ（ch2-3-4, ch1-3-4, ch1-2-4, ch1-2-3）の4パターンで動作識別を行う。そして、動作識別に影響を与える筋電センサ3つを検討し、さらにチャンネル数を減らすかを特徴量に周波数情報を交えながら検証をする。実験は、2人の健常者（被験者 A（31歳、男性）、被験者 B（23歳、男性））で行い、認識させようとしている動作以外のことに力が入ってしまわないように、腕には負荷を与えないようにして行う。

図4-11 筋電センサ3つ組の組合せ
4.4.3 実験結果および考察

実験結果を表4-3,4-4に示す。図4-12に示す3つの筋電センサを使用しているとき、(ch3,ch4の両方がある組合せのとき)は4つ使用しているときと同等の高い識別率を得ることができた。図4-13に各動作で特徴的な信号が発生しているチャンネルを示し、図4-13より各動作に影響を与えているチャンネルを表4-5にまとめる。実験によりch3は主に「回内」、「回外」の動作で特徴的な筋電位を発生し、ch4では「背屈」のとき特徴的な筋電位が発生していた。また、「握る」、「開く」の動作ではch3,ch4の両方で特徴的に発生していた。残りの動作である「掌屈」はch1,ch2の両方で特徴的な筋電位が発生していたので、どちらかが使用されれば識別できると推測できる。

表4-3 電極数減少による識別率 [%]（被験者A）

<table>
<thead>
<tr>
<th></th>
<th>4ch (1,2,3,4)</th>
<th>3ch (2,3,4)</th>
<th>3ch (1,3,4)</th>
<th>3ch (1,2,4)</th>
<th>3ch (1,2,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>開く</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>握る</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>掌屈</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>76</td>
<td>100</td>
</tr>
<tr>
<td>背屈</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>回内</td>
<td>100</td>
<td>96</td>
<td>94</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>回外</td>
<td>96</td>
<td>98</td>
<td>100</td>
<td>100</td>
<td>56</td>
</tr>
<tr>
<td>平均</td>
<td>99.3</td>
<td>99.0</td>
<td>99.0</td>
<td>46.0</td>
<td>83.3</td>
</tr>
</tbody>
</table>

*(内は使用したチャンネル番号。

表4-4 電極数減少による識別率 [%]（被験者B）

<table>
<thead>
<tr>
<th></th>
<th>4ch (1,2,3,4)</th>
<th>3ch (2,3,4)</th>
<th>3ch (1,3,4)</th>
<th>3ch (1,2,4)</th>
<th>3ch (1,2,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>開く</td>
<td>98</td>
<td>100</td>
<td>94</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>握る</td>
<td>100</td>
<td>98</td>
<td>86</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>掌屈</td>
<td>100</td>
<td>92</td>
<td>94</td>
<td>4</td>
<td>82</td>
</tr>
<tr>
<td>背屈</td>
<td>98</td>
<td>98</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>回内</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>回外</td>
<td>100</td>
<td>98</td>
<td>100</td>
<td>8</td>
<td>48</td>
</tr>
<tr>
<td>平均</td>
<td>99.3</td>
<td>97.7</td>
<td>95.3</td>
<td>52.0</td>
<td>83.0</td>
</tr>
</tbody>
</table>

*(内は使用したチャンネル番号。

図4-12 識別精度の高い筋電センサ3つの組合せ
図4-13 各動作で特徴的な信号が発生しているチャンネル
表4-5 動作に影響を与えていているチャンネル

<table>
<thead>
<tr>
<th>効果</th>
<th>CH1</th>
<th>CH2</th>
<th>CH3</th>
<th>CH4</th>
</tr>
</thead>
<tbody>
<tr>
<td>開く</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>握る</td>
<td>○</td>
<td></td>
<td>△</td>
<td>○</td>
</tr>
<tr>
<td>掌屈</td>
<td>◎</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>背屈</td>
<td></td>
<td></td>
<td>◎</td>
<td>○</td>
</tr>
<tr>
<td>回内</td>
<td>◎</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>回外</td>
<td></td>
<td></td>
<td></td>
<td>◎</td>
</tr>
</tbody>
</table>

◎:影響大, ○:影響中, △:影響小

また、識別対象とした6動作に使用される主な前腕部の筋肉の名称を以下に示す。

開く: 総指伸筋、小指伸筋(小指)、長母指伸筋(親指)、長母指外転筋(親指)
握る: 浅指屈筋(親指以外)、深指屈筋(親指以外)、長母指屈筋(親指)
掌屈: 橈側手根屈筋、長掌筋、尺側手根屈筋
背屈: 尺側手根伸筋、長(短)橈側手根伸筋、総指伸筋(補助)
回内: 腕橈骨筋、円回内筋、方形回内筋
回外: 腕橈骨筋、回外筋

実験により高い識別精度が得られたch2-3-4, ch1-3-4の組合せは、上記の筋肉の中から動作ごとに少なくとも1つの筋肉から筋電位が測定できる位置に筋電センサがあった。

さらに電極数を減らして筋電センサを2つにして実験を行ってみたところ、ほぼ全てのチャンネルの組合せで動作を誤認識してしまった。そこで、動作数を4つにして「開く」、「握る」、「掌屈」、「背屈」のみにしたところ、図4-14に示すch2,ch4の組合せのとき、表4-6に示すように平均で90%以上と高い識別率を得ることができた。

そこで、筋電センサが2つでも6つの動作を識別できるように最大エントロピー法で得た周波数情報を使用して1つの筋電センサから得られる情報の量を増やして実験を行った。ch2,ch4のそれぞれの周波数情報5個ずつと実効値1個ずつ計12個の特徴量を用意した。しかし、実効値のみの時と同様に筋電センサが2つでは動作数を4つにしなければ高い識別率を得ることができなかった。識別率は表4-6に示すように実効値のみのときと同等である。これにより、周波数情報を使用しても筋電位がほとんど発生しない位置で測定していては特徴的なスペクトルの検出が難しいので高精度なパターン解析が困難であると推測できる。よって、測定位置や測定方法などを検討する必要がある。

表4-6 筋電センサ2つ(ch2,ch4)での識別率 [%]

<table>
<thead>
<tr>
<th></th>
<th>被験者A</th>
<th>被験者B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMS MEM</td>
<td>RMS MEM</td>
</tr>
<tr>
<td>開く</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>98</td>
</tr>
<tr>
<td>握る</td>
<td>86</td>
<td>90</td>
</tr>
<tr>
<td>掌屈</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>背屈</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>平均</td>
<td>95.5</td>
<td>97.0</td>
</tr>
</tbody>
</table>

図4-14 筋電センサ2つの測定位置

*「RMSのみ」と「RMSとMEM両方」
4.4.4 今後の課題

本節では、筋電センサを3つにしても高い識別率を得られる測定位置を実験的な検証により得た。しかし、2つにすると高い識別率を得るには動作数を減らさなければならなかった。日常生活を快適に送れるようにするには、行える動作の種類は多い方が良いので特徴量の処理方法や測定位置をさらに検討して、電極数を少なくしても多くの動作を識別できるようにする必要がある。

本節で使用したMEMは、スペクトルの分解能が非常に高く、特徴となる周波数情報がフーリエ変換と比較するときれいに出ていた。そこで、さらに識別精度を上げることができると推測できるので、MEMによる周波数情報を特徴量とした動作識別法について、検討が必要である。

本節では、2人の被験者で実験を行ったが使用する電極の組合せは人によって違いが出てくる可能性があるので、多くの被験者で実験する必要がある。今回の実験において2人とも同じ組合せで高い識別率が得られたのは、研究において同じように力を入れて動作を行うようにしていたからだと推測できる。また被験者ごとに違うであろう測定位置を全ての被験者で実験的に検証していければ身体的負担が大きくなるので、多変量解析などを使用して自動的に最適な筋電位の測定位置を見つけ出すシステムを構築していく必要がある。

筋電位を測定するとき、コスト面や前腕の切断状況によっては多くの筋電センサの使用が難しい場合があるので、少数チャンネルで高精度に動作識別ができるほうがより良い。そこで、使用する筋電センサの電極数を少なくしても高精度に前腕部の動作識別を行えるようにする必要がある。
4.5 まとめ

本章では、筋電義手の制御を目的とした簡潔なニューラルネットによる前腕の動作識別法を提案した。筋電位信号の実効値を増幅してニューラルネットへの「入力データ」とし、識別対象動作ごとに n=40 回分の実効値から求めた平均値を「学習用データ」として最適化することで、従来の方法では複雑化する傾向のあるニューラルネットの構造を複雑にせずに 90%以上の高い識別精度が獲得できることを示した。本手法によりシステム全体を簡潔にすることができるので、安価な構成することが可能となる。いかに高い識別能力を有するシステムでも複雑で膨大な計算量があっては実用化することが非常に難しく、可能であったとしても高価なものになる。それでは、これらの技術を必要としている人たちの中でも一部の人しか使うことができない状態になってしまう。よって、研究の初期段階からシステムが複雑にならないように考慮しておく必要がある。

また本章では、筋疲労時のロバスト性向上のために使用中のニューラルネットの再学習法を提案した。複数回連続して同じ動作を認識した場合、その認識されている動作は被験者が意図している動作と同じである（正しい）として再学習することで、筋疲労による識別精度の低下を抑えることを示した。よって、長時間使用しても 90%以上の高い識別精度を保つことができた。

さらに本章では、最少電極数の筋電位信号に基づくニューラルネットを用いた前腕動作識別を実験的に検討した。適切な位置で筋電位信号を測定すれば筋電センサが 3 つでも 6 種類の動作に対して 90%以上の識別率を得られたことがわかった。また、識別対象の動作数を 4 種類に減らせば、筋電センサが 2 つでも 90%以上の識別率を得られた。
第 5 章 ファジィ推論を用いた筋電位信号に基づく前腕部動作識別

5.1 背景・目的

本章では、前腕部筋電位信号からの動作識別に可能性分布推論法によるファジィ推論を用いる。可能性分布推論法によりファジィ推論を行うことで四則演算のみのシンプルな演算処理で動作識別を行い、簡潔なシステムにする。ファジィ推論は、識別対象動作の筋電位の大きさが大体分っていれば推測でき、可能性分布推論法ならば設計した全てのルールが推論結果に影響するため人の意思をより反映できる。また、ニューラルネットにおけるローカルミニマのような問題を起こさないため、本章はファジィ推論を用いる。さらに筋電位信号の特徴は、筋疲労などが原因で徐々に変化するので筋疲労を考慮した動作識別が必要である。そこで本章では、筋疲労により動的な変化をする筋電位信号に適応できるファジィ推論の再設計法を提案する。動作識別システムの処理の流れを図 5-1 に示す。

図 5-1 動作識別システム概要

5.2 ファジィ推論による動作識別法

5.2.1 筋電位の平均値と標準偏差によるメンバーシップ関数

筋電位は、同じように力を入れ続けていても一定の値を維持するわけではない。図 5-2 に手のひらを開く動作を維持して力を入れている時の波形（実線）を示す。破線は平均値を示す。そこで、識別対象の動作時の実効値を複数回分（n 回）取り出して、それらの平均値（Average value：AVE）と標準偏差（Standard Deviation：SD）を求める。本章では n =40 とする。実効値が平均値からバラつくている分布を D'Agostino-Pearson 検定により正規性検定を行い有意水準 5％で有意差なしとなったの
で正規分布と仮定する。正規分布に基づき，平均値から±SD の範囲に 68.3%のデータが存在し，±2SD の範囲に 95.5%のデータが存在し，±3SD の範囲に 99.7%のデータが存在する（cf. 図 5-4）。これらの関係を用いて図 5-3 に示すようにメンバーシップ関数を設計する。測定した筋電位の実効値が，平均値付近にあるときは SM（Small），わずかに離れているときは MD（Middle），大きく離れているときは BG（Big）とし，実効値に応じて 0 から 1 までのグレード値をそれぞれとる。これを，各識別対象動作のチャンネルごとに設計する。

図 5-2 実効値波形例

図 5-3 メンバーシップ関数
(A) 標準偏差と正規分布について

標準偏差はデータの分布の広がり幅（ばらつき）をみる1つの尺度である。平均値と標準偏差の値が分かれれば、データがどの範囲にどのような割合で散らばっているか（分布）が、ある程度明らかにできる。この分布の1つが正規分布である。

正規分布は、確率分布をグラフにしたもので左右対称の釣り鐘型をしており、なだらかな曲線を描き一番高い確率の場所が平均値になる分布である。自然現象や誤差の度数分布の多くは正規分布をとる。平均値をμ、分散をσ²として以下の式で表される。

\[f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2} \right) \] (5-1)

図5-4 正規分布

本章は、実効値の平均値からバラついている分布をD'Agostino-Pearson検定により正規性検定を行い有意水準5%で有意差なしとなったので正規分布と仮定する。D'Agostino-Pearson検定とは、データ群の正規性を検定するための方法の1つでありデータのサンプル数が少なくても感度良く正規性を検出ができる。
5.2.2 ファジィルールの設計

ファジィルールは、表5-1のように設計する。4チャンネルのSM、MD、BGの組合せで識別確率を決める。測定した筋電位信号の実効値が、識別対象動作に対して使用した全チャンネルがSMのときは高確率HP（High Probability）、3チャンネルがSMで1チャンネルだけMDのときは中確率MP（Middle Probability）、2チャンネルがSMで2チャンネルがMDのときは低確率LP（Low Probability）、1チャンネルだけSMで3チャンネルがMDのときは極低確率EP（Extremely-low Probability）、使用した全チャンネルがBGの時は無動作NM（No motion）とする。表5-1の"output value"は各ルールの推論出力値（識別確率）を示す。提案したファジィ推論法には可能性分布推論法[47]を適用する。可能性分布推論法はMamdaniの"Min-Max"法[48]と違い最大値・最小値を求めるための比較処理が発生しないので計算量が少なくできる。また可能性分布推論法は、ルール全ての出力値が推論結果に影響を与えるので"Min-Max"法よりヒトの意思を反映させた結果を得ることができる。

表5-1 IF-THEN 型 ファジィルール

<table>
<thead>
<tr>
<th></th>
<th>CH1</th>
<th>CH2</th>
<th>CH3</th>
<th>CH4</th>
<th>Output value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
<td>SM</td>
<td>SM</td>
<td>SM</td>
<td>SM</td>
<td>1.00</td>
</tr>
<tr>
<td>MP</td>
<td>MD</td>
<td>SM</td>
<td>SM</td>
<td>SM</td>
<td>0.75</td>
</tr>
<tr>
<td>MP</td>
<td>SM</td>
<td>MD</td>
<td>SM</td>
<td>SM</td>
<td>0.75</td>
</tr>
<tr>
<td>MP</td>
<td>SM</td>
<td>SM</td>
<td>MD</td>
<td>SM</td>
<td>0.75</td>
</tr>
<tr>
<td>MP</td>
<td>SM</td>
<td>SM</td>
<td>SM</td>
<td>MD</td>
<td>0.75</td>
</tr>
<tr>
<td>LP</td>
<td>SM</td>
<td>MD</td>
<td>SM</td>
<td>MD</td>
<td>0.50</td>
</tr>
<tr>
<td>LP</td>
<td>MD</td>
<td>SM</td>
<td>SM</td>
<td>MD</td>
<td>0.50</td>
</tr>
<tr>
<td>LP</td>
<td>SM</td>
<td>MD</td>
<td>MD</td>
<td>SM</td>
<td>0.50</td>
</tr>
<tr>
<td>LP</td>
<td>MD</td>
<td>MD</td>
<td>SM</td>
<td>MD</td>
<td>0.50</td>
</tr>
<tr>
<td>EP</td>
<td>SM</td>
<td>MD</td>
<td>MD</td>
<td>MD</td>
<td>0.25</td>
</tr>
<tr>
<td>EP</td>
<td>MD</td>
<td>SM</td>
<td>MD</td>
<td>MD</td>
<td>0.25</td>
</tr>
<tr>
<td>EP</td>
<td>MD</td>
<td>MD</td>
<td>MD</td>
<td>SM</td>
<td>0.25</td>
</tr>
<tr>
<td>EP</td>
<td>MD</td>
<td>MD</td>
<td>MD</td>
<td>MD</td>
<td>0.25</td>
</tr>
<tr>
<td>NM</td>
<td>BG</td>
<td>BG</td>
<td>BG</td>
<td>BG</td>
<td>0.00</td>
</tr>
</tbody>
</table>

推論方法は、まず式(5-2)より各ルールの適合度を算出する。式内のA_p^kは各ルールのメンバーシップ関数の出力値、x_pは各メンバーシップ関数への入力値（筋電位信号の実効値）、そしてPはルール内のパラメータ数である。

$$\omega^k = \prod_{p=1}^{P} A_p^k(x_p) \quad (5-2)$$

次に、式(5-3)よりルール全体の推論結果を求める。\hat{y}^kは各ルールの出力値、Kはルール数である。
推論結果 \hat{y} を識別確率 DP (Discrimination Probability) とする。これらの推論を全ての識別対象動作に対して行う。

5.3 ファジィ推論による動作識別能力の実験

5.3.1 実験方法

本章での測定位置は、被験者の右前腕部に4チャンネルの筋電センサを90度間隔で取り付ける（cf.図2-12）。そして識別対象とする動作は、「開く」、「握る」、「掌屈」、「背屈」、「回内」、「回外」の6種類の動作（cf.図2-14）とする。また、識別確率 DP が0.8以上になった動作は認識され、認識された識別確率 DP が0.3以下になるまで認識したままになるように閾値を設定する。

これらを使っての提案手法の精度を確認するための実験として識別対象の6種類の動作を、それぞれ50回ずつ行う。そしてファジィ推論による識別結果が、実際の動作に対してどれくらいの割合で正しく識別できているかを確認する。その際、動作中に別の動作が一回でも認識されてしまった場合は誤認識とする。今回の実験は、2人の健常者（被験者A（31歳,男性）, B（23歳,男性））で行い、識別させようとしている動作以外のことに力が入ってしまわないように、腕には負荷を与えないようにして行う。

5.3.2 実験結果および考察

実験結果を表5-2に示す。2人とも全ての動作で90%以上の識別率を獲得することができた。実験により高い識別率を示したが、動作によっては認識が始まら後で遅延が発生するものがあった。これは、動作を行い筋電位が発生してから安定するまでの時間分だけ、動作の認識が遅れてしまうためだと推測できるので識別確率 DP の認識開始の閾値を固定値とせずに可変させるなどの処理が必要だと推測できる。

<table>
<thead>
<tr>
<th>表5-2 識別実験結果 [単位：%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject A</td>
</tr>
<tr>
<td>Open</td>
</tr>
<tr>
<td>Grasp</td>
</tr>
<tr>
<td>Flexion</td>
</tr>
<tr>
<td>Dorsiflexion</td>
</tr>
<tr>
<td>Pronation</td>
</tr>
<tr>
<td>Supination</td>
</tr>
<tr>
<td>Average</td>
</tr>
</tbody>
</table>
図 5-5 に回外のときの遅延の様子を示す。動作開始のタイミングを示すための筋電位の全チャンネルの合計値と、ファジー推論の結果のグレード値を示す。動作開始直後は、認識開始時と比べて筋電位が大きく発生してしまっているため、動作により筋電位が発生してから安定するまで動作を認識できずにいる。しかし、動作認識開始が遅れることはあったが識別精度には大きな影響は無かった。このことにより本手法は、ある程度は筋電位が乱れても安全性の高いシステムと言える。

図 5-5 動作認識遅延時のファジー推論結果

本節では、識別確率 DP に対して設定した閾値を認識開始に「0.8」、認識解除に「0.3」と固定したが、全ての動作に対して同じ値で固定することが最適とは限らないので最適な値を検討する必要がある。

本節の実験では、識別対象の動作以外の部分に力が入らないように行った。しかし、日常生活動作を行うとき、特に道具を使う場合には他の部分にまったく力を入れずに腕のみを動かすことは難しい。よって今後は、どのような状況に対応できるように、腕に日常生活使う道具などを重りとして付けたり、体の姿勢を変えるなどして腕に負荷をかけた状態での識別精度の確認を行い、ロバスト性の向上させる必要がある。また、日常生活動作のいろいろな動作・状況に対して対応できるように、識別対象動作の種類を増やしたり動作を組み合わせたりできるようにする必要があります。
5.4 筋疲労を考慮したロバスト動作識別

5.4.1 筋疲労に対する対策

筋肉を長時間使用していると筋電位信号は、筋疲労などが原因となって徐々に変化する（振幅の増大、低周波域へのシフト）[39]ため筋疲労を考慮した動作識別が必要である。よって、使用中に筋電位信号の変化に対応したメンバーシップ関数の再設計を行いたい。しかし、動作識別中に識別システムは被験者の意図した真の動作を知ることが出来ない。そこで本節は、L 回連続して同じ動作が識別されたら、被験者が意図している真の動作とする。そして、図 5-6 に示すように現在動作識別に使用中の平均値と標準偏差を得るために使用した旧設計用データである \(n=40 \) 個の実効値 \(RMS_i \) から最も古いデータ \(RMS_1 \) を取り除き、L 回目の筋電位の実効値 \(L_{times}RMS \) を加えて \(n=40 \) 個の再設計用データを作る。そして式 (5-4), (5-5) より再設計用の平均値 \(R_{AVE} \) と標準偏差 \(R_{SD} \) を計算し、図 5-3 のメンバーシップ関数の平均値と標準偏差を更新し再設計する。再設計のあと識別の回数は数え直され、L 回ごとに平均値と標準偏差は更新される。

![図 5-6 再設計用データの準備](image)

\[
R_{AVE} = \frac{1}{n} \sum_{i=1}^{n} RMS_i \quad (5-4)
\]

\[
R_{SD} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (RMS_i - R_{AVE})^2} \quad (5-5)
\]

5.4.2 再設計による動作識別能力実験

実験内容は、まず前節で行った実験に同じ 6 種類の動作をそれぞれ 50 回ずつ行い、ファジー推論による識別結果が、実際の動作に対して結果が正しい確率を確認する。そして本節はこれらの実験を、腕を休まずに 3 回連続行い、識別結果の変化を確認する。 「4.3 筋疲労時のロバスト性向上」 の結果より再設計の間隔が長いと筋疲労に対応しきれなくなるので、本節では再設計を行う条件は、L = 1 〜 3 回とする。本実験は、腕に負荷を与えないようにして、2 人の健常者（被験者 A, B）で行う。
5.4.3 実験結果および考察

実験結果を図5-7、図5-8に示す。2人の被験者とも全ての動作が90%以上の高い識別精度を得ることができた。識別率は再設計（有・無）ともに殆ど同じだったが、再設計無しのときの動作の認識開始が遅れることがあった。図5-9に、手のひらを握るときの動作識別の遅延の例を示す。動作開始のタイミングを確認するために筋電位の全チャンネルの合計値と、再設計（有・無）でのファジィ推論の結果のグレード値を示す。この推論には再設計（有・無）共に同じ筋電位のデータを用いてている。また、図5-9の遅延が発生した実験は腕を休みずにに行った実験の3回目であり、50回の握る動作の中で遅延は9回発生し、遅延時間の平均は300ms、標準偏差は272msであった。遅延時間にはバラつきがあり、認識のタイミングが取り難くなってしまっていた。

図5-9より再設計を行ったときのファジィ推論の結果のグレード値が、再設計を行わないときより全体的に高いことがわかる。この結果より提案した再設計システム、筋疲労時の動作識別に対して高い性能があることがわかる。よって、再設計により筋電位の変化に対応できていると言える。そして、図5-9に示されるように再設計無しではファジィ推論の結果のグレード値が、再設計有りのときより値が全体的に小さいので動作認識の閾値を越えることが難しくなるために動作認識開始が遅れてしまっている。

図5-7 再設計有りと無しの実験結果（被験者A）
図 5-8 再設計有りと無しの実験結果（被験者 B）

図 5-9 再設計有りと無しのファジィ推論結果
図 5-10 に図 5-9 における認識開始遅延の様子を再設計（有・無）でのシミュレータの動きにより示す。再設計がないときは認識開始が遅れている様子がわかる。このような遅延は筋電義手の使用者に時間遅れを感じさせてしまうので、本節のように動作認識開始の遅延を抑える必要がある。

図 5-10 再設計有りと無しのシミュレータ結果

再設計によるメンバーシップ関数の変化を図 5-11 に示す。実線は実験を行う前のメンバーシップ関数を示し、破線は 3 回目の実験後のメンバーシップ関数を示す。メンバーシップ関数が、筋疲労により筋電位の振幅が増大している方向へ変化していることがかる。

図 5-11 再設計によるメンバーシップ関数の変化
5.4.4 今後の課題

本節は、筋疲労による筋電位信号の変化に基づく前腕部動作識別を実現した。しかし、筋疲労による問題はまだいくつかある。

・ 本節は、識別確率 DP の閾値は全ての L のタイミングで固定値に設定したが、全てのタイミングに対して同じ値が最適とは限らない。よって、識別確率 DP の閾値を筋肉の疲労具合ごとに最適値を検討する必要がある。

・ 再設計により筋疲労に完全に対応させると疲労がなくなってから、識別精度に悪い影響を与えてしまう可能性がある。したがって、再設計の最適なタイミングを検討する必要がある。

・ 筋電位信号の特徴は健常者と切断者とでは違いがあり、また切断者の中でも切断状況などから違いが出てくる。そこで、実際の切断者の方に対しても本手法が有効かどうかを実験により検証する必要がある。

5.5 まとめ

本章では、適応型ファジィ推論を用いた筋電位信号に基づく前腕部動作識別法を提案した。識別対象動作ごとに各チャンネルにおける筋電位信号の実効値から平均値と標準偏差を求め、それらからメンバーシップ関数とファジィルールをユーザごとの筋電位信号の特徴に適応させて設計し、前腕部動作を推論することで 98% 以上の高い識別精度を獲得することができた。さらに可能性分布推論法によりファジィ推論を行うことで四則演算のみのシンプルな演算処理で動作識別を行い、簡潔なシステムにした。

また本章では筋疲労時のロバスト性向上のため、使用中に筋疲労による筋電位信号の変化に対応したメンバーシップ関数の再設計を行った。複数回連続して同じ動作を認識した場合、その認識されている動作は被験者が意図している動作と同じである（正しい）として、その動作のメンバーシップ関数を再設計することで、平均 300ms の筋疲労による動作認識開始の遅延を抑えることができた。
第 6 章 重回帰分析のよる筋電位信号の
最適測定位置推定

6.1 背景・目的

過去の研究では、筋電位信号から動作を識別するときに全ての被験者が同じ位置から
筋電位信号を測定することが多い。しかし、動作識別のための筋電位の最適測定位置は、
前腕切断者の残存筋の状況により違う。そこで、使用者ごとの最適な位置で筋電位を測
定した方が良い。また、コストや前腕の切断状況により多数の筋電センサの使用が難し
くなる場合があるので、少数の筋電センサで動作を識別したい。そこで、統計的に選択
された最適な位置で測定することで動作識別のために必要となる最少の筋電センサで
動作識別が行えるはずなので、少数の筋電センサで動作を識別できる可能性がある。よ
って本章の目的は、動作識別のための最適測定位置を推定し、前腕部動作に対して高い
識別精度を獲得することである。

本章の識別対象とする動作は、対象物を持つために必要な手のひらの「開く、握る」、
日常生活動作を円滑に行うために重要な役割を果たす回旋動作「回内、回外」、さらに
伸展動作「掌屈、背屈」の計 6 動作とする。

6.2 重回帰分析による最適測定位置の推定

最適測定位置推定システムの概要を図 6-1 に示す。最適測定位置の推定のために筋電
信号を 8 箇所から測定する。測定位置は、被験者の右前腕に 8 チャンネルの筋電センサを
45 度間隔で配置する（cf. 図 2-13）。本章は従来の手法のように動作に使う特定の筋肉
の位置で測定したりせず、腕に等間隔に配置した 8 個の筋電センサから最適な位置を選
択する。この 8 チャンネルから最適測定位置を重回帰分析により推定する。重回帰分析
の説明変数には 8 チャンネルの筋電位の実効値とする。そして、重回帰分析の目的変数
には主成分分析により設計する。

図 6-1 最適測定位置推定システム概要
6.2.1 主成分分析による目的変数

主成分分析とは、複数の変数を統合してデータ全体の傾向と特徴を表す新たな変数を生成する方法である。そこで、識別対象動作ごとの8チャンネルのRMSの傾向・特徴を表す新たな変数を主成分分析により作成する。そして主成分分析により得られた傾向・特徴を、重回帰分析の目的変数に設定する。

最適位置推定処理の流れを図6-2に示す。まず目的変数を次のように設計する。識別対象動作に対して8チャンネルのRMSを20組ずつ用意する。これらのRMSに対して主成分分析を行う。主成分分析により得られた累積寄与率が0.8以上になる第m主成分までを使って、m次元のベクトルの大きさを求める。累積寄与率は、主成分が元のデータをどの程度現しているかを示す寄与率を累積したものであり、主成分分析がどの程度元のデータの特徴を表現しているかの割合を示している。通常、累積寄与率が80%程度となるように主成分数が決まる。本章では、第3主成分で累積寄与率が0.8以上になるので、3次元のベクトル(cf. 図6-3)の大きさを計算する。このベクトルの大きさを8チャンネルのRMSの総合的特性とし、重回帰分析の目的変数とする。
6.2.2 重回帰分析による最適測定位置推定

重回帰分析は、いくつかの原因（説明変数）とその結果（目的変数）を結ぶ統計処理である。式(6-1)に示す目的変数 Y と説明変数 x の関係を解読することで、目的変数に対する説明変数の影響度がわかる。

$$ y = a_0 + a_1 x_1 + a_2 x_2 + \cdots + a_n x_n \quad (6-1) $$

よって、動作識別に対する筋電位信号の各測定位置の影響度を推定することができる。まず、重回帰分析の説明変数には主成分分析と同様の 8 チャンネルの筋電位の RMS を使用する。そして、重回帰分析の目的変数には主成分分析より求めたベクトルの大きさ（総合的特性）を用いる。これらの目的変数と説明変数の組合せを各動作に対して 20 組ずつ用意する。

そして、変数増減法により影響力の大きい順に説明変数（測定位置）を選択する。重回帰分析により得られた p 値が 0.05 以下になっているチャンネルの中から、p 値が小さい順に 3 つのチャンネルを選択する。そして選択された 3 箇所を最適測定位置とする。本章は、4 人の健常者（被験者 A, B, C, D）から最適測定位置の推定を行う。実験結果を図 6-4(a) - (d)に示す。被験者 A は、CH1, 2, 7 の 3 つが選択された（cf. 図 6-4(a)）。被験者 B は、CH1, 4, 7 の 3 つが選択された（cf. 図 6-4(b)）。被験者 C は、CH4, 7, 8 の 3 つが選択された（cf. 図 6-4(c)）。被験者 D は、CH3, 6, 8 の 3 つが選択された（cf. 図 6-4(d)）。
図 6-4 (d). 全ての被験者は、健常者であったがそれぞれの最適測定位置は違っていた。これらの結果は、最適測定位置が“筋肉の使い方の癖”や“体格”などによる筋電位信号の個人差に対応しているものと推測できる。また全ての被験者において 3 箇所を選択したとき、元のモデルに対する当てはまりの良さを示す“自由度調整済みの重相関係数の二乗”は約 0.6 であった。

図 6-4 選択された最適測定位置（3ch）

6.3 最適測定位置による動作識別能力の実験

6.3.1 実験方法

本節では、選択された最適位置より測定された筋電位から前腕部動作が識別可能か確認する。前章までに提案した動作識別法の中で最も結果の良かった、5 章に示したファジィ推論法により動作識別を行う。そして、最適位置と標準位置から測定した筋電位から動作識別を行い、識別精度を比較する。標準位置とは 3～5 章で使用していた測定位置のことであり、被験者の右前腕に 4 チャンネルの筋電センサを 90 度間隔で配置する（cf. 図 2-12）。筋電センサの数は、最適位置は 3 個、標準位置は 4 個である。
これらを使っての提案手法の精度を確認するための実験として識別対象の6種類の動作を、それぞれ50回ずつ行う。そして、ファジィ推論による識別結果が、実際の動作に対してどれくらいの割合で正しく識別できているのかを確認する。そして、最適位置と標準位置の実験を行い、識別精度を比較する。その際、動作中に別の動作が一回でも認識されてしまったら誤認識とする。実験は、前節で最適測定位置推定を行った4人の健常者（被験者A,B,C,D）で行い、識別させようとしている動作以外のことに力が入ってしまわないように、腕には負荷を与えないようにして行う。

6.3.2 実験結果および考察

図6-5に実験結果を示す。4人の被験者とも全ての動作において90%以上の高い識別精度を獲得できた。また、筋電位信号を最適な位置から測定することにより筋電センサの数が3個でも筋電センサの数が4個（標準位置）のときの識別率と同等の識別率が獲得できた。よって、最適な位置から測定することにより筋電センサの数を減らすことが実現できたと言える。

図 6-5 最適位置（3ch）と標準位置（4ch）による動作識別実験結果
本章では、健常者において“筋肉の使い方の癖”や“体格”などによる筋電位信号の最適な測定位置に対する個人差に対応することができた。そこで前腕切断者の個人差に対しても対応できる可能性があるので、実際の切断者に対しても本手法が有効に働くかどうかを実験により検証する必要がある。また被験者 C は、3 個の筋電センサ（最適位置）による識別率の方が高かった。最適な測定位置を推定することにより、誤認識の原因となる位置を避けることができたと推測できる。

変数増減法により選択される筋電センサの数を 2 つにして動作識別実験が行ったが、識別率は非常に低かった。筋電センサの数が 2 つのときは識別対象動作を減らさなければ高い識別精度が得られないと推測できる。しかし、動作数を減らしてしまうと日常生活動作を行うときに不便が生じてしまうので、動作数を減らさずに高精度に動作識別ができなければならず、そこで、さらに少ない筋電センサで動作を識別できるように、さらに複数の筋電センサを用いて広範囲から同時に筋電位信号を測定し、それらの中から最適測定位置を選択することで、前腕部動作に対してより影響度の高い測定位置を推定する必要がある。そうすることで少ない筋電センサで多くの動作を識別できる可能性がある。

6.4 まとめ

本章では、前腕部動作識別のための重回帰分析による筋電位信号の最適測定位置推定法について提案した。8箇所から同時に測定した筋電位信号の実効値に対して主成分分析を行い識別対象動作ごとの総合的特性を求め、これらの特性と動作ごとの実効値に対して重回帰分析を行い、8箇所の測定位置から前腕部動作に対して影響力の大きい順に選択していく。選択された位置を最適測定位置とした。筋電位信号を最適測定位置から測定することにより 3 個の筋電センサで 6 種類の動作に対して 90%以上の高い識別精度を獲得できた。本手法を用いることで、残存筋の状況に対して最適な測定位置を決めることができるのでは切断者ごとの最適な測定位置を決めることができる可能性が大きい。
第7章 ウィルクスΛに基づいた判別分析による
最適測定位置推定

7.1 背景・目的
過去の研究では、筋電位信号から動作を識別するときに全ての被験者が同じ位置から筋電位信号を測定することが多い。しかし、動作識別のための筋電位の最適測定位置は、前腕切断者の残存筋の状況により異なる。そこで、使用者ごとの最適な位置で筋電位を測定した方が良い。また、コストや前腕の切断状況により多数の筋電センサの使用が難しくなる場合があるので、少数の筋電センサで動作を識別したい。そこで、統計的に選択された最適な位置で測定することで動作識別のために必要となる最少の筋電センサで動作識別が行えるはずなので、少数の筋電センサで動作を識別できる可能性がある。よって本章の目的は、動作識別のための最適測定位置を推定し、前腕部動作に対して高い識別精度を獲得することである。

前章では最適測定位置を推定したとき、最適位置の選択数に対して明確な判断基準を示すことができなかったので、本章ではウィルクスΛの統計量により判断基準を示す。

本章の識別対象とする動作は、対象物を持つために必要な手のひらの「開く, 握る」、日常生活動作を円滑に行うために重要な役割を果たす回旋動作「回内, 回外」、さらに伸展動作「掌屈, 背屈」の計6動作とする。

図7-1 最適測定位置推定システム概要

7.2 判別分析による最適測定位置推定
最適測定位置推定システムの概要を図7-1に示す。最適位置の推定のために筋電位信号を8箇所から測定し、これら8チャンネルからウィルクスΛに基づいた判別分析に
より最適測定位置を推定する。測定位置は、被験者の右前腕に8チャンネルの筋電センサを45度間隔で配置する（cf. 図2-13）。

本章は従来の手法のように識別対象動作に使う特定の筋肉の位置で測定したりせず、腕に等間隔に配置した8個の筋電センサから最適な位置を選択する。これは切断状況によっては動作のための筋肉が健常者とは違う可能性があり、動作識別のための最適な測定位置は、前腕切断者の残存筋の状況により違うと考えられるので特定の筋肉の位置を指定することが最適な測定位置につながるとは限らないからである。また、前腕切断により動作に使用する筋肉の最大の筋収縮が得られる点であるモーターポイントの近くからの測定が困難になる可能性がある。よって筋電センサを等間隔に配置して最適位置を推定する。

図7-2 最適測定位置推定処理の流れ

最適測定位置推定処理の流れを図7-2に示す。判別分析は、あらかじめ所定のグループに所属することがわかっているデータ群を判別する手法である。そこで本章は、識別対象動作ごとに8チャンネルのRMSを20組ずつ用意して、各動作のデータ群から判別を行う。これらのRMSは、動作により発生した筋電位が安定してからのものを用いる。またデータ群の判別は、マハラノビス汎距離により行う。そして、判別分析の変数増減法により8箇所ある測定位置の中から影響力の大きい順に選択する。測定位置の選択基準の有意確率は、pin = pout = 0.05に設定する。選択された位置での判別精度をウィルクスλの統計量により確認する。ウィルクスλは、多変量に拡張された平均値の差の検定を行うものであり、以下の式（7-1）により示される。

\[\Lambda = \frac{\|\mu\|}{\|\Sigma\|} \]

(7-1)
T は全体の平方和積和行列，W は群内の平方和積和行列を示す。ウィルクス Λ は 0 から 1 の間の値になり，値が 0 に近ければ判別精度が高いことを示す。また既にある変数 x_p に新しい変数 x_j の追加されるときの判別力の増加を以下の式（7-2）より示す。

$$
Λ(x_j \mid x_p) = \frac{Λ(x_j, x_p)}{Λ(x_p)}
$$

(7-2)

右边の分子は x_j と x_p 両方によるウィルクス Λ，分母は x_p のみでのウィルクス Λ を示す。そして新しい変数 x_j を追加するかを以下の式により判断する。追加の限界値 F_{in} が式（7-3）で成立していた場合は追加する。

$$
F_0 = \frac{n - g - p}{g - 1} \cdot \frac{1 - Λ(x_j \mid x_p)}{Λ(x_j \mid x_p)} \geq F_{in}
$$

(7-3)

また，変数 x_k を除くかを以下の式により判断する。除く限界値 F_{out} が式（7-4）で成立していた場合は変数 x_k を除く。

$$
F_0 = \frac{n - g - (p - 1)}{g - 1} \cdot \frac{1 - Λ(x_k \mid x_{p\setminus k})}{Λ(x_k \mid x_p)} < F_{out}
$$

(7-4)

式（7-3）, (7-4) における n は全サンプル数，g はデータ群数，$x_{p\setminus k}$ は，x_p から x_k を除いた（$p - 1$）個の変数を示す。

本章は，3 人の健常者(A, B, C)で最適測定位置の推定を行う。図 7-3 に選択された位置の数によるウィルクス Λ の値を示す。選択された位置が増えるごとにウィルクス Λ の値が 0 に近づいていることがわかる。そして選択された位置の数が 3 篮所以上になるとウィルクス Λ の値の変化が小さくなっているので，測定位置の数を 3 篮所より増やしても判別精度はほとんど変わらないことになる。したがって，最初に選択された 3 篮所で 6 動作を十分判別可能であるので，最初の 3 篮所を最適測定位置とする。

実験結果を図 7-4 (a) - (c) に示す。被験者 A は，CH1,4,8 の 3 チャンネルが選択された（cf. 図 7-4 (a)）。被験者 B は，CH1,3,6 の 3 チャンネルが選択された（cf. 図 7-4 (b)）。被験者 C は，CH2,3,7 の 3 チャンネルが選択された（cf. 図 7-4 (c)）。全ての被験者は健常者であったが，それぞれの最適測定位置は違っていた。これは最適測定位置が，被験者ごとの“筋肉の使い方の癖”や“体格”などによる筋電位信号の特徴の個人差に対応していると推測できる。よって，提案手法は前腕切断者の個人差にも対応できる可能性が高い。
図7-3 選択位置の数によるウィルクス Λ

図7-4 選択された最適測定位置（3ch）

(a) 被験者 A（CH1,4,8）
(b) 被験者 B（CH1,3,6）
(c) 被験者 C（CH2,3,7）
7.3 最適測定位置による動作識別能力の実験

7.3.1 実験方法

本節では、選択された最適測定位置より測定された筋電位信号から高精度に前腕部動作が識別可能か確認する。3～5章で提案した動作識別法の中で最も結果の良かった、5章に示したファジー推論法により動作識別を行う。そして、最適位置と標準位置から測定した筋電位から動作識別を行い、識別精度を比較する。標準位置と標準位置は3～5章で使用していた測定位置のことであり、被験者の右前腕に4チャンネルの筋電センサを90度間隔で配置する（cf. 図2-12）。筋電センサの数は、最適位置は3個、標準位置は4個である。

これらを使っての提案手法の精度を確認するための実験として識別対象の6種類の動作を、それぞれ50回ずつ行う。そして、ファジー推論による識別結果が、実際の動作に対してどれくらいの割合で正しく識別できているのかを確認する。そして、最適位置と標準位置の実験を行い、識別精度を比較する。その際、動作中に別の動作が一回でも認識されてしまったら誤認識とする。今回の実験は、3人の健常者（被験者A、B、C）で行い、識別させようとしている動作以外のことに力が入ってしまわないように、腕には負荷を与えないようにして行う。

7.3.2 実験結果および考察

実験結果を図7-5に示す。3人とも全ての動作で90％以上の識別率を獲得することが可能で、したがって全ての被験者が、それぞれの最適な位置で筋電位信号を測定することにより高い識別精度を獲得できた。よって、最適測定位置は各被験者の個人差に対応できていることが確認できた。既存の測定位置選択の研究[30]では、被験者ごとに選択された2～5箇所の測定位置において4動作（開く、握る、掌屈、背屈）または2動作（開く、握る）に対して高精度に識別可能であった。本章では全ての被験者において、選択された測定位置は3箇所であり、6動作が識別可能であった。特に日常生活動作を円滑に行うために重要な回旋動作「回内、回外」[20]の識別が可能であり、本章の方が筋電センサ数、動作数ともに効率的な手法である。

また被験者Cは、3個の筋電センサ（最適位置）による識別率の方が高く、最適な位置を推定することにより、誤認識の原因となる位置を避けることができたと考えられる。さらに最適位置で3個の筋電センサによる識別率は、標準位置で4個の筋電センサによる識別率とほとんど同じであった。よって、最適な位置で測定することにより筋電センサの数を減らすことも実現できたと言える。
7.3.3 今後の課題

本章は、最適な位置で筋電位信号を測定することで高い識別精度を獲得できた。しかし、測定位置の最適化や動作識別法にはまだいくつかの課題がある。

・本章は、3個の筋電センサで高い識別精度を獲得できた。しかし、筋電義手を使うときコスト面や前腕の切断状況などから筋電センサの数は、より少ない方が実用的になる。したがって、さらに少ない筋電センサで動作を識別できるように、8箇所より広範囲から同時に筋電位信号を測定し動作識別に対して影響力の大きい位置を選択することにより、さらに最適な測定位置を推定する必要がある。

・本章は、健常者において“筋肉の使い方の癖”や“体格”などによる筋電位信号の個人差の特徴に対応することができた。よって、提案手法は前腕切断者の個人差にも対応できる可能性が高い。しかし、前腕切断者と健常者とでは筋電位信号の特徴は違う可能性がある。そこで、実際の切断者の方に対しても本手法が有効かどうかを実験により検証を行う必要がある。

・本章の最適測定位置推定実験は、識別対象の動作以外の部分に力が入らない安定した筋電位信号で行った。しかし、日常生活動作を行うときに他の部分にまったく力を入れずに腕のみを動かすことは難しいので、あらゆる状況において最適な位置とはならない可能性がある。よって今後は、あらゆる状況においても最適な測定位置となるように、腕に負荷をつけた状態でも最適測定位置推定を行う必要がある。
7.4 まとめ

本章では、ウィルクス Λに基づいた判別分析による前腕部筋電位信号の最適測定位置推定法を提案した。8箇所から同時に測定した筋電位信号の実効値に対して判別分析による変数増減法を行い、選択された測定位置による識別対象動作に対する判別精度をウィルクス Λにより判定を行い最適測定位置の推定を行った。腕に障害が無い健常者であっても、人により、最適な測定位置が変わることが実験を通して明らかとなった。これらの測定位置を用いることにより、センサ数が従来の4個から3個に減じても識別精度が90%以上であり、識別精度は大幅に変わらなかった。また提案手法は、実際の切断者に対しても使用者ごとの最適位置を推定することができる可能性が大きい。動作識別のための最適測定位置は、前腕切断者の残存筋の状況により違うので本章は、実際の切断者が筋電義手を使用するときに非常に役に立つと言える。
第8章 結論

8.1 まとめ

第7章のウィルクスΛに基づく判別分析によりユーザごとに異なる最適な測定位置を選択し、第3章の適応型ファジィ推論により動作識別を行うことで、3個の筋電センサで手のひらを「開く、握る」、手首の回旋動作「回内、回外」、伸展動作「掌屈、背屈」の計6動作に対して平均96.5%の識別率を獲得できた。第3章の適応型ファジィ推論は四則演算のみのシンプルな演算処理で動作識別が行えたので簡潔なシステムを構築できた。

以下に、本研究で提案した前腕部動作識別法と最適測定位置推定法について示す。

[前腕部表面筋電位信号に基づく動作識別法]

ニューラルネット（自己組織化マップ、誤差逆伝播法）、ファジィ推論を用いて対象物を持つために必要な手のひらの「開く、握る」、日常生活動作を円滑に行うために重要な役割を果たす回旋動作「回内、回外」[20]、さらに伸展動作「掌屈、背屈」の計6動作を高精度に識別することができた。以下に本研究で提案した動作識別法を示す。

第3章 前腕部動作識別のための自己組織化マップの最適マッピング

本章では、筋電位信号に基づく前腕部動作の高精度識別のためのトーラス型自己組織化マップの最適マッピング法を提案した。通常のマップは、データ群の境目にあるユニットは隣接しているデータ群にあるユニットの両方の情報を学習することになり、データ群の境目で誤認識してしまう可能性がある。そこで本章では、同じ動作の学習結果はより狭い範囲の領域に集中させ、各動作の学習結果群を十分に分散させることができる自己組織化マップの最適マッピングを行った。さらに最適化したマップの特性を利用して、動作の誤認識を抑えることができる動作識別を行った。そして、最適マッピングを行うことにより通常マッピングより識別率が0.6〜9.3%向上し、平均88%の識別率が獲得できた。

第4章 簡潔なニューラルネットによる前腕部動作識別

本章では、筋電義手の制御を目的とした簡潔なニューラルネットによる前腕の動作識別法を提案した。筋電位信号の実効値を增幅してニューラルネットへの「入力データ」とし、識別対象動作ごとにn=40回分の実効値から求めた平均値を「学習用データ」として最適化することで、従来の方法では複雑化する傾向のあるニューラルネットの構造を複雑にせずに90%以上の高い識別精度が獲得できることを示した。本手法によりシステム全体を簡潔にすることが可能なので、安価な構成にすることが可能となる。いかに
高い識別能力を有するシステムでも複雑で膨大な計算量があっては実用化することが非常に難しく、可能であったとしても高価なものになる。それでは、これらの技術を必要としている人たちの中でも一部の人しか使うことができない状態になってしまう。よって、研究の初期段階からシステムが複雑にならないように考慮しておく必要がある。また本章では、筋疲労時のロバスト性向上のために使用中のニューラルネットの再学習法を提案した。複数回連続して同じ動作を認識した場合、その認識されている動作は被験者が意図している動作と異なる（正しい）として再学習することで、筋疲労による識別精度の低下を抑えることを示した。よって、長時間使用しても90%以上の高い識別精度を保つことができた。

さらに本章では、最少電極数の筋電位信号に基づくニューラルネットを用いた前腕部動作識別を実験的に検討した。適切な位置で筋電位信号を測定すれば筋電センサが3つでも6種類の動作に対して90%以上の識別率を得ることがわかった。また、識別対象の動作数を4種類に減らせば、筋電センサが2つでも90%以上の識別率を得られた。

第5章 適応型ファジィ推論を用いた筋電位信号に基づく前腕部動作識別

本章では、適応型ファジィ推論を用いた筋電位信号に基づく前腕部動作識別法を提案した。識別対象動作ごとに各チャンネルにおける筋電位信号の実効値から平均値と標準偏差を求め、それからメンバーシップ関数とファジィルールをユーザごとの筋電位信号の特徴に適応させて設計し、前腕部動作を推論することで98%以上の高い識別精度を獲得することができた。さらに可能性分布推論法によりファジィ推論を行うことで四則演算のみのシンプルな演算処理で動作識別を行い、簡潔なシステムにした。

また本章では筋疲労時のロバスト性向上のため、使用中に筋疲労による筋電位信号の変化に対応したメンバーシップ関数の再設計を行った。複数回連続して同じ動作を認識した場合、その認識されている動作は被験者が意図している動作と同じである（正しい）として、その動作のメンバーシップ関数を再設計することで、平均300msの筋疲労による動作認識開始の遅延を抑えることができた。

まとめ 前腕部動作識別法

本研究では3つの前腕部動作識別法を提案した。図8-1に各手法の識別率を示す。3章は学習の最適化により識別率を向上させることができたが、平均88%と十分な精度ではなく、システムも簡潔とは言えない。4章のニューラルネットによる動作識別実験の結果は識別率が最も結果の良かった増幅率が30倍の結果を示す。識別率は90%以上あり、システムを簡潔にすることも実現できたが、学習のときローカルミミが問題であった。5章のファジィ推論による識別率は、提案した3つの手法の中では最も高かった。また5.3章の適応型ファジィ推論による動作識別実験よりも、筋電位信号が乱れたときに認識開始が遅れたことはあったが、殆ど誤認識しなかったので、ファジィ推論による動作識別法は安全性の高いシステムと言える。さらに可能性分布推論法によりファジィ推
論を行うことで四則演算のみのシンプルな演算処理で動作識別が行えたので簡潔なシステムを構築できた。したがって，5章の適応型ファジィ推論を用いた筋電位信号に基づく前腕部動作識別法が最も有効な手法である。

図 8-1 動作識別実験結果比較

[前腕部動作識別のための筋電位信号の最適測定位置推定法]

多変量解析（重回帰分析，判別分析）を用いて6動作を判別するのに影響力の高い測定位置を選択することで，前腕部動作識別のための筋電位信号の最適測定位置を推定した。実験により健常者において前腕部動作を行うときの“筋肉の使い方の癖”や“体格”などによる筋電位信号の個人差の特徴に対応することができた。以下に本研究で提案した最適測定位置推定法を示す。

第 6 章 重回帰分析による筋電位信号の最適測定位置推定

本章では，前腕部動作識別のための重回帰分析による筋電位信号の最適測定位置推定法について提案した。8箇所から同時に測定した筋電位信号の実効値に対して主成分分析を行い識別対象動作ごとの総合的特性を求め，これらの特性と動作ごとの実効値に対して重回帰分析を行い，8箇所の測定位置から前腕部動作に対して影響力の大きい順に選択していく。選択された位置を最適測定位置とした。筋電位信号を最適測定位置から測定することにより3つの筋電センサで6種類の動作に対して90%以上の高い識別精度を獲得できた。本手法を用いることで，残存筋の状況に対して最適な測定位置を決めることができるので切断者ごとの最適な測定位置を決めることができる可能性が大きい。
第7章 ウィルクスΛに基づく判別分析による最適測定位置推定

本章では、ウィルクスΛに基づいた判別分析による前腕部筋電位信号の最適測定位置推定法を提案した。8箇所から同時に測定した筋電位信号の実効値に対して判別分析による変数増減法を行い、選択された測定位置による識別対象動作に対する判別精度をウィルクスΛにより判定を行い最適測定位置の推定を行った。腕に障害が無い健常者であっても、人により、最適な測定位置が変わることが実験を通じて明らかとなった。これらの測定位置を用いることにより、センサ数が従来の4個から3個に減じても識別精度が90%以上であり、識別精度は大幅に変わらなかった。また提案手法は、実際の切断者に対しても使用者ごとの最適位置を推定することができる可能性が大きい。動作識別のための最適測定位置は、前腕切断者の残存筋の状況により違うので本章は、実際の切断者が筋電義手を使用するときに非常に役に立つと言える。

まとめ 最適測定位置推定法

本研究では2つの最適測定位置推定法を提案した。各手法とも推定された最適位置は3箇所であり、最適位置から測定した筋電位信号に基づいて動作識別を行い90%以上の識別率が獲得できた。各手法を比較すると、6章では最適位置を決定したときの精度を表す値として重回帰分析の決定係数「自由度調整済みの重相関係数の二乗：R²」を用いた。本研究では全ての被験者において約0.6であった。R²は0.5以上ならば十分な値であるとされるが明確な基準があるわけではない、上記に対して、7章では最適位置を決定したときの判別精度として「ウィルクスΛの統計量」を用いた。ウィルクスΛは値が0に近づくほど判別精度が高くなるので図7-3のように値の推移から最適位置の選択数に対して明確な判断基準を示すことができる。したがって、7章のウィルクスΛに基づいた判別分析による最適測定位置推定法が最も有効な手法である。

8.2 今後の課題

本研究の識別対象動作は、対象物を持つために必要な手のひらの「開く、握る」、日常生活動作を円滑に行うために重要な役割を果たす回旋動作「内、回外」[20]と伸展動作「掌屈、背屈」とした。義手に健常者と同等の機能を持たせている日常生活動作のいろいろな動作・状況に対して完全に対応できるようにするためには、動作の種類の追加（指む、指屈、屈など）や複数動作同時認識[49]などを行い、これらに対して高い識別精度を獲得できるようにする、よりロバストな動作識別法の構築する必要がある。また筋疲労については、疲労から回復したときの対応について検討する必要がある。筋電位信号の振幅の大きさや周波数情報から現在の疲労状況を推定することにより、現在点において動作識別を行うために最適なシステムを自動的に構築できるようにする必要がある。

本研究では2〜4人の被験者で行った実験を、より多くの被験者で実験を行う必要がある。筋電位信号は同じ動作でも、皮膚抵抗などの身体的要因から人によって特徴が違
う。したがって、本研究での提案手法の有効性をより確かなものにするために多くの被験者で実験を行う必要がある。また本研究は、健常者のみで実験を行ったが、健常者と障害者とでは筋電位の特徴の違いや実験を行ってみないとわからない違いがある可能性があるので、障害者の方の協力を得て実験を行う必要がある。

本研究は、最適測定位置を推定することにより3個の筋電センサで高い識別精度を獲得できた。しかし、筋電義手を使うときコスト面や前腕の切断状況などから筋電センサの数は、より少ない方が実用的になる。今後は、さらに少ない筋電センサで動作を識別できるようにする必要がある。そこで、最適位置を推定するための筋電センサの数を増やし、より広範囲から高精度に筋電位信号を測定することにより、さらに最適な測定位置の推定を行う必要がある。

本研究を含めた多くの研究では安定した環境において測定した筋電位信号の解析を行っている。しかし、日常生活環境は筋電位信号を測定するには姿勢変化、荷物を持つ、肌の乾燥など多くの外乱があり、例えば、姿勢の変化では腕を下に下げた状態、腕を重力に対して垂直にした状態、さらに肩を上げ曲げた状態など様々あり、同じ動作でも姿勢によって筋電位信号が違った特徴を示すことがある。またバックなどの荷物を持った場合、姿勢を維持しているだけで筋電位信号が発生してしまう。そこで、これらの外乱に適応する必要がある。

本研究では筋電位信号の解析結果をシミュレータに出力してきたが、今後は解析結果を用いて筋電義手本体のモーション制御を視野に入れた研究を行う必要がある。義手に与わせたい動作が正しく解析できたとしても、義手本体がユーザの意図しない動きをしてもは扱いが困難なモノになってしまう。そこで義手に人間らしい滑らかな動きをさせるために、人間の前腕部（手のひら、手首）の動きを計測・解析し、義手に反映させることで人間らしい滑らかな動きを実現する必要がある。人間らしい動きといっても同じ動作でもヒトによって動き方の癖があるので、例えば片腕切断者の場合、健常側の腕を解析して筋電義手に動作の癖を学習させることでユーザごとに扱いやすいシステムを構築する必要がある。そして今後は、図8-2に示すような筋電義手などを用いて動作制御を行い、実機による動作識別実験を行う必要がある。
図 8-2 筋電義手制御システム

【今後の研究について】

筋電位信号は義手以外に対しても多くの研究が行われている。例えば、表面筋電信号に基づく電動アシスト車椅子の新しい制御法[25]、バイオフィードバック治療訓練支援用マニュピュレータの開発[50]、ロボットアームの EMG ベース制御用の制度モデルの切り替え[51]やリカレントファジィニューラルネットワークを用いる動的脊椎力の推定[52]などの研究が行われている。そこで今後は、筋電義手以外にも筋電位信号を用いて人間の日常生活を支援できる機器の研究が必要である。

また筋電位信号による支援機器だけでなく、他の福祉機器の研究も行う必要がある。事故や病気などが原因となり今まで当たり前だったことができなくなってしまうことがある。例えば、両手を使って食事をする、歩いて近所に買い物に行くなど、ごく当たり前のことが困難になってしまったことがある。そのような方たちの日常生活を支援する福祉機器の研究をする必要がある。例えば、電動車いすの安全走行制御や、健全な部分を生かしながら障害を負った部分のみをアシストできる支援機器などである。

福祉機器は、研究を行い、論文にまとめただけでは、これらの最新技術を必要としている人たちの生活は変わらない。最終的に高性能なシステムが構築できたとしても、義手や車いすに搭載困難なくらい複雑なものでは実用化は非常に難しいものになる。そこで研究の初期段階から実用化を意識しておく必要がある。
参考文献

[22] 財団法人鉄道弘済会 義肢装具サポートセンター http://www.normanet.ne.jp/~limfitce/

[34] 木曾淳, 村上博紀, 関弘和, 「操作者の意思を考慮したファジイ推論による電動車いすの障害物回避制御」, 生活生命支援医療福祉工学系学会連合大会 2011, O2-7, 2011.

[35] 木塚朝博, 増田正, 木竜徹, 佐渡山亜兵共著, バイオメカニズム学会編「表面筋電図」, 東京電機大学出版局

[38] 常盤野和男, 大友詔雄, 田中幸雄 著 「最大エントロピー法による時系列解析：MemCalcの理論と実際」, 北海道大学図書刊行会

[55] 西川慎一, 北村新三, 「システム制御情報ライブラリー11 ニューラルネットと計測制御」, システム制御情報学会, 株式会社朝倉書店

[58] 谷萩隆嗣 編著, 萩原将文, 山口亨 共著, 「ニューラルネットワークとファジィ信号処理」, コロナ社

[59] 石村貞夫, 石村光資郎 著「入門はじめての多変量解析」, 東京図書

[60] 大川善邦 著 「波形の特徴抽出のための数学的処理」, CQ 出版

[61] 三上直樹 著「はじめて学ぶディジタル・フィルタと高速フーリエ変換」, CQ 出版

[62] 橋本洋志, 小林裕之 共著 「図解 Open-GL による 3 次元 CG アニメーション」, 株式会社オーム社
研究業績

学術論文

[5] 木曽淳，谷口悠，関弘和，「ウィルクスΛに基づいた判別分析による前腕部筋電位信号の最適測定位置推定」，電気学会論文誌D，Vol.132，No.3，2012.3.（採録決定）

[6] 木曽淳，村上博紀，関弘和，「走行危険度を考慮した電動車いすのファジィ推論型障害物回避制御」，電気学会論文誌C，Vol.132，No.6，2012.6.（採録決定）

解説文

国際会議

国内会議

[16] 木曽淳, 関弘和, 「筋電义手制御を目的とした筋電位信号高精度解析システム」, 計測自動制御学会中部支部第96回「電機計測制御技術ワーキングセミナー」, 名古屋, 2011.11.
受賞
謝辞

本研究は，千葉工業大学 工学部 電気電子情報工学科 関研究室において，平成18年4月より平成24年2月にわたって行ったものです。

本研究を行うにあたり，千葉工業大学 工学部 電気電子情報工学科 久保田 稔 教授ならびに関弘和 准教授にはご多忙の中，研究の取り組み方から論文の書き方まで，様々なご指導を受け賜りました厚く感謝申し上げます．同学科 相知 政司 教授ならびに千葉工業大学 工学部 未来ロボティクス学科 南方 英明 教授，慶應義塾大学 理工学部 システムデザイン工学科 満倉 靖恵 准教授におかれましても副査としてご助言を戴くとともに本論文の細部にわたりご指導を戴き，誠にありがとうございました．ここに感謝の意を表します．平成21年3月に退官された千葉工業大学 工学部 電気電子情報工学科 多田隈 進 元教授にも様々なご指導を受け賜りました厚く感謝申し上げます．特に，関 弘和 准教授には卒業論文から修士論文，博士論文まで6年間にわたりご指導いただき深く感謝いたします．関研究室では筋電義手を始めとした福祉機器の研究に関わることができ，平成15年に会社を辞めて大学へ入学してきたときに研究したいと考えていた多くの研究ができることができ，深く感謝いたします．また実験の手伝いや多くの良きアドバイスを下さった高橋一樹氏，石原謙志氏，照屋吉正氏，村上博紀氏，高橋慶光氏，倉持貴史氏，田之畑直希氏，岡田拓馬氏，谷口悠氏，鈴木一茂氏，そして関研究室の皆さん本当にありがとうございました．

平成24年3月
木曽 淳
付録 A.筋電位測定機器仕様

筋電位計測装置システム

■EMGアイソレータ（株式会社ディケイエイチ社製）型式 PH-2501/4

■EMGアイソレータ本体
・EMGアンプ供給電圧：4.5V
・使用絶縁アンプ：ISO124（ゲイン = 1）
・素子絶縁耐圧：1500V
・信号出力端子：HR10A7R6S × 1個（HIROSE社製）
・電源電圧：DC12V
・消費電力：10W以下
・寸法：140(W)×45(H)×90(D)[mm] 突起物含まず
・質量：約280g

■中継ボックス
・EMGアンプ接続端子：EGG.OB.304.CLL × 4個（LEMO社製）
・アース接続端子：EGG.OB.304.CLL × 1個（LEMO社製）
・寸法：65(W)×26(H)×65(D)[mm] 突起物含まず
・質量：約90g

■接続ケーブル
・長さ：約5m

■ACアダプタ
・電源電圧：AC100V
・出力電圧：DC12V（安定化）
・消費電圧：最大12W

■EMGアンプ（バイオメトリクス社製）型式 SX230
・入力インピーダンス：10TΩ
・ゲイン：60dB（1000倍）
・周波数特性：20Hz ～ 460Hz
・ノイズ：<5μV
・CRMM@60Hz：>96dB（typical 110dB）
・質量：約12g（ケーブル、コネクタ含む）
・ケーブル長：1.25m
■ EMG 用グランドリード 型式 R200
 ・ケーブル長 : 1.25m

図 A-4 EMG アンプ
図 A-5 EMG 用グランドケーブル

図 A-6 EMG アンプ（内部構成）
図 A-7 EMG アンプ（寸法）

■ 出力ケーブル 型式 KY-162
 ・コネクタ形状 : 出力を BNC に分岐
 ・ケーブル長 : 5m

■ 粘着テープ 型式 T350
 ・材質 : 専用形状カット両面テープ 350 個入り

図 A-8 筋電位計測装置システム（全体）
付録 B. 筋電義手仕様

■筋電義手 SH-2（原田電子工業株式会社）
- 仕様素材 高張力アルミ・ポリアセタール・ステンレス
- 制御自由度 5 自由度
- 関節数 14 関節 1 関節 20 グラム
- 重量 370 グラム
- オプションセンサ 圧力センサ 全指 SFR-3（イナバゴム株式会社）
 角度センサ 親指 RDC1022A05 10kΩ（アルプス電気）
 他指 SV01A 10kΩ（村田製作所）

*研究用に使うためコントローラは外部に置き、制御用 PC の DA ポートから出力される±5V の信号により指の屈曲・伸展を行う。電圧が(+）のとき屈曲、(-) のとき伸展する。また電圧が大きくなるほど動きが速くなる。

図 B-1 原田電子工業株式会社製 筋電義手
付録 C 解析アルゴリズム

C.1 ニューラルネット

C.2.1 ニューラルネットの概要

人間の脳の仕組みを真似た学習アルゴリズムで、人間の脳は、ニューロンという細胞が多数つながったネットワーク構造になっている。このネットワークを単純化・定式化したのがニューラルネットである。数値データの扱いに適し非線形写像を学習的に獲得する能力を持っている。大きな特徴として、学習能力のほかに、耐ノイズ性、汎化性がある。学習には教師ありと教師なしの在り、本研究では「教師あり」の誤差逆伝播と「教師なし」の自己組織化マップを用いる。

C.1.2 誤差逆伝播

誤差逆伝播（Back Propagation）とは、階層構造をしたニューラルネットである。処理の流れは図 C-1 に示すように、ある入力パターンを入れた時に、出される出力パターンに対して、今回の入力パターンで出力させたいと考えている値を教師信号として与える。そして、出力されたパターンとの誤差を使って、出力層と中間層の間ににある重みを修正し、そのとき発生した誤差を使って、中間層と入力層の間にある重みを修正させる。このように、入力方向とは逆方向に誤差が伝播していく。以下に、出力関数である「シグモイド関数」と、出力パターンの演算法である「前向き演算」、重みの学習法である「後向き演算」について示す。

図 C-1 誤差逆伝播の処理の流れ
シグモイド関数

各ニューロンの出力にはシグモイド関数を使用し、式(C-1)のようにになっている。

\[f(x) = \frac{1}{1 + e^{-x}} \] (C-1)

また、微分すると式(C-2)のようにになる。

\[f'(x) = \frac{1}{1 + e^{-x}} e^{-x} = \frac{1}{1 + e^{-x}} \left(1 + e^{-x} - 1 \right)
= f(x) \left\{ 1 - f(x) \right\} \] (C-2)

このようにシグモイド関数自身で微分結果を簡単に表すことができるため、学習に微分成分が必要となる誤差逆伝播には適している。シグモイド関数のグラフは、図C-2のようになっていて、\(f(x) = 0 \) と \(f(x) = 1 \) を漸近線に持っている。また、微分した時のグラフは、図C-3のようになっている。

![図C-2 シグモイド関数](image)

![図C-3 シグモイド関数（微分値）](image)
■出力パターンの演算法（前向き演算）

誤差逆伝播のネットワークは、図C-4のように構成されており入力パターン \(X_i \)は、それぞれが中間層のニューロン全てに接続されており、各接点に設定されている重み \(W_{ji} \)と掛けて足し合わせたものを \(T_j \)とする。この \(T_j \)をシグモイド関数に入力して出力されたものを \(H_j \)とする。そして、中間層からの出力 \(H_j \)と、それぞれに対応した重み \(W_{kj} \)を掛けて足し合わせた \(U_k \)をシグモイド関数に入力して出力された値を \(O_k \)とし、ニューラルネットの出力とする。式に表すと各層の出力は式(C-3), (C-4)のようになる。

・中間層の出力

\[
T_j = \sum_{i=0}^{I} X_i W_{ji} \tag{C-3}
\]

\[
H_j = f(T_j)
\]

・出力層の出力

\[
U_k = \sum_{j=0}^{J} H_j W_{kj} \tag{C-4}
\]

\[
O_k = f(U_k)
\]
重みの学習法（後向き演算）

誤差修正の学習には、最急降下法を用いる。最急降下法とは、誤差の変化は重みの変動によって図 C-5 のような曲線を描くので、学習する前の誤差が、点 a だとすると誤差が小さくなる方へ急降下するように重みを修正させていき点 A で最小になり終了する。ただし、学習前の誤差が、点 b で始まってしまうと、誤差は小さくなる方へ移動する為、誤差の修正が点 B で終了してしまい、これ以上小さくすることが出来ない。この状態を、複数あると思われる局所的な最小値に陥ってしまうことなので「ローカルミニマム」と言い、誤差が必ずしも最小値にはなるとは限らないという欠点がある。

学習の計算の流れは次のようになる。まず出力層と教師信号の誤差 E を式(C-5)により算出する。

\[
E = \frac{1}{K} \sum_{k=1}^{K} (t_k - O_k)^2 \quad \text{(C-5)}
\]

ここで最小二乗法を適用し、この誤差を修正したい出力層の重みで偏微分することで、

\[
\Delta W_{kj} = -\eta \frac{\partial E}{\partial W_{kj}} = -\eta \frac{\partial E}{\partial O_k} \frac{\partial O_k}{\partial U_k} \frac{\partial U_k}{\partial W_{kj}} \quad \text{(C-6)}
\]

\(\eta\)：学習係数

式(C-6)のようになり重みの修正量 \(\Delta W_{kj}\) がわかる。右辺の 3 つの偏微分をそれぞれ行うと以下のようになる。

\[
\frac{\partial E}{\partial O_k} = \frac{\partial}{\partial O_k} \left(\frac{1}{2} (t_k - O_k)^2 \right) = -(t_k - O_k) \quad \text{(C-7)}
\]
これらを、まとめると次のようになる。

\[
\Delta W_{ij} = -\eta \frac{\partial E}{\partial W_{ij}} = -\eta \frac{\partial E}{\partial O_k} \frac{\partial O_k}{\partial U_k} \frac{\partial U_k}{\partial W_{ij}}
\]

\[
= -\eta \left\{ -(t_k - O_k)O_k(1 - O_k)H_j \right\}
\]

\[
= \eta \delta_k H_j
\]

ただし \(\delta_k = O_k(1 - O_k)(t_k - O_k) \)

ここまでが、出力層につながる重みの修正量 \(\Delta W_{kj} \) となる。次に中間層につながる重みの修正を行う。同様に、先ほど求めた誤差 \(E \) を修正したい中間層の重みで偏微分する。

\[
\Delta W_{ji} = -\eta \frac{\partial E}{\partial W_{ji}}
\]

\[
= -\eta \left\{ \sum_{k} \frac{\partial E_k}{\partial O_k} \frac{\partial O_k}{\partial U_k} \frac{\partial U_k}{\partial W_{ji}} \right\} \frac{\partial H_j}{\partial T_j} \frac{\partial T_j}{\partial W_{ji}}
\]

そして、それぞれを偏微分して、まとめると次のようになる。

\[
\frac{\partial U_k}{\partial H_j} = \frac{\partial}{\partial H_j} \left\{ H_1W_{k1} + H_2W_{k2} + \ldots + H_jW_{kj} + \ldots + H_jW_{kj} \right\}
\]

\[
= W_{kj}
\]

\[
\frac{\partial H_j}{\partial T_j} = \frac{\partial}{\partial T_j} \left\{ \frac{1}{1 + e^{-T_j}} \right\} = \frac{e^{-T_j}}{\left(1 + e^{-T_j} \right)^2}
\]

\[
= \frac{1}{1 + e^{-T_j}} \left\{ 1 - \frac{1}{1 + e^{-T_j}} \right\} = H_j \left(1 - H_j \right)
\]
\[
\frac{\partial T_j}{\partial W_{ji}} = \frac{\partial}{\partial W_{ji}} \left\{ X_i W_{ji} + X_{i2} W_{ji2} + \ldots + X_i W_{ji} + \ldots + X_i W_{ji} \right\} \\
= X_i
\]

(C-14)

\[
\Delta W_{ji} = -\eta \frac{\partial E}{\partial W_{ji}} = -\eta \frac{\partial H_j}{\partial T_j} \sum_{k=1}^{K} \frac{\partial E_k}{\partial O_k} \frac{\partial O_k}{\partial U_k} \frac{\partial U_k}{\partial H_j}
\]

\[
= -\eta H_j (1 - H_j) X_i \sum_{k=1}^{K} W_{kj} (t_k - O_k) O_k (1 - O_k)
\]

(C-15)

\[
= -\eta H_j (1 - H_j) X_i \sum_{k=1}^{K} W_{kj} \delta_k
\]

\[
= \eta \delta_j X_i
\]

ただし \(\delta_j = H_j (1 - H_j) \sum_{k=1}^{K} W_{kj} \delta_k \)

以上が，中間層につながる重みの修正量 \(\Delta W_{ji} \)となる。
これらの，後向き演算の結果のみを簡単にまとめるときのようになる。

・出力層につながる重みの学習

出力層の出力

\[
\delta = \left(\text{出力} \times \left\{ 1 - \text{出力} \right\} \times \left\{ \text{教師信号} - \text{出力} \right\} \right)
\]

シグモイド関数の微分値 誤差

・中間層につながる重みの学習

中間層の出力

\[
\delta = \left(\text{出力} \times \left\{ 1 - \text{出力} \right\} \times \text{入力層への \(\delta \)の重付け和} \right)
\]

シグモイド関数の微分値 誤差
C.1.3 汎化能力

階層型ニューラルネットは、理論的には中間層のニューロンを増やすほど、より複雑な関数を学習することが可能になる。よって、ネットワークのニューロンを少しずつ増やすにしたがって、学習用データに対して、こちらが望んだ値を出力するように向かうことになる。しかし、さらにニューロンを増やしていくと、学習用データに対しての出力がより良くなったとしても、未学習データに対しては、必ずしも良い出力が得られるとは限らない。これは、ネットワークの表現能力が高すぎて本来学習してほしい関数よりも複雑な関数が学習されてしまう可能性があるからである。このように学習用データに対する誤差を減少させるために、未学習データに対して出力を悪化させてしまう現象を「過学習」という。学習の本来の目的は、学習用データ以外の未学習データの入力に対して、正しく出力を与える能力を獲得することである。この能力を「汎化能力」という。このことについて関数補間を例に説明する。たとえば、図C-6のような入出力層が1つずつある3層ネットワークを考える。こうした3層ネットワークが任意の関数を写像できる能力を持つことは既に証明されており、この問題は原理的にはうまく学習できるはずであるが、誤差逆伝播法を使う限りにおいてはネットワークの自由度で結果が異なってくる。中間層のニューロン数を少しずつ増やしていき自由度を上げていくと図C-6 (a)から図C-6 (b)へと関数補間能力（汎化能力）は向上していく。しかし、さらに増やしていくと学習用データについてはさらに良い近似を得られるが、図C-6 (c)に示すように逆に未学習データの結果は悪化してしまう場合が見られる。

汎化能力を向上させる方法は、基本的に「学習用データを豊富にする」か「ネットワークの自由度を制限する（中間層のニューロン数を制限する）」の2つの方法がある。学習用データを豊富にすれば、ネットワークのニューロン数が多くなって複雑化しても汎化能力を確保できるが、それでは計算量が増えるってしまうので、ネットワークの自由度を制限して確保するほうが良い。最適な汎化能力の獲得は、パターン解析を行うとき非常に有効なので過去にもいくつかの研究が行われている[44][45]。

図 C-6 連続関数の近似と過学習 [43]
C.1.4 自己組織化マップ

自己組織化マップ（Self-Organizing-Maps：SOM）は、1981年にKohonenによって提案された教師なし競合学習型ニューラルネットの1つであり、多次元からなるデータの解析に用いられる。教師なし学習の特徴として、以下のものが挙げられる。

① データ集合をいくつかのグループに分類するクラスタリングに適している。
② データ集合中から隠れた特徴を自動的に抽出することが可能である。
③ 教師なし学習の出力層ニューロンは固有の特徴を表す場合が多い。したがって、その出力値によってそれぞれの特徴に対する類似性や典型性などを表現できる。
④ 入力データの次元が高いと入力データ間の相互関係を把握することは困難である。

KohonenのSOMは、入力データ間の類似度を自動的に見いだし、似た入力どうしをネットワーク上の近くに配置することができる。したがって、入力データに対して選択的に反応するネットワークを構成できる。SOMは、基本的には図C-7に示すように入力層とマップ層の2層構造をしている。同じ層のニューロン間には結合はない。

図C-7 自己組織化マップの基本構造

SOMの学習アルゴリズムは、次のようになる。
1. マップ層の重みの初期値を、乱数を用いて小さな値に設定する。
2. 入力層に入力ベクトル $x = [x_1, x_2, x_3, \ldots, x_n]$ を入力する。
3. マップ層では各ニューロンの重みベクトルと入力ベクトルとの距離 d を計算する。
4. “入力ベクトル”と“重みベクトル”の距離 d が最小となるニューロンを選択する。このニューロンを勝者ニューロンと呼ぶ。
5. 勝者ニューロンとその近傍に位置するニューロンの重みを更新する。
6. 近傍ニューロン数と入力ベクトルの学習率 α は、学習の進行とともに小さくなる。
 （学習率 α は、図 C-8 に示すように学習回数とともに減少する。）
7. 以降、2〜6 を繰り返して各ニューロンの重みを学習する。

\[\alpha = a \left(1 - \frac{t}{T} \right) \]

a: 学習率
a: 学習率の初期値
t: 現在の学習回数
T: 総学習回数

これらの学習により入力データ間の類似度を自動的に見いだし、似た入力データどうしをネットワーク上の近くに配置することができる。SOM には以下の特徴がある。
① マップ内での相互結合が、不要なので計算量が少ない。
② アルゴリズムで微分演算が不要であり、数学的には非常に簡単である。
③ 生理学的知見にも適合する。
C.2 ファジィ推論

C.2.1 ファジィについて

ファジィとは、人間が得意とする“あいまいさ”をコンピュータに扱わせるための手法である。1965年L.A.Zadehにより考えられた。従来の手法ではコンピュータ上では、現在の気温が20度であるとか、Aさんの身長が180cmであるという明確な数値しか扱えなかった。人間が、気温が『暑い』や身長が『高い』と感じるとき、例えば身長が180cmあるから『高い』と感じたからといって、179cmは身長が『低い』と感じるわけではない。従来の手法では、ある区切りの値を指定してそこから数値が大きければ『暑い』とか『高い』いったような表現しかできない。そこでファジィ集合を使用する。ファジィ集合とは、ある事実にどのくらいあてはまるかという度合をあらわすことができる集合である。つまり、ファジィ集合はあいまいさを数字として表現できる集合である。それに対し、あいまいさを含まない集合をクリスプ集合という。

図C-9 クリスプ集合例
図C-10 ファジィ集合例

ここで背の高さの表現に用いた例をあげる。背が『高い』というのははっきりと何cm以上という言い方はできない。そこで、何cm以上なら明らかに背が『高い』と言えるか、また何cm以下なら明らかに背が『低い』と言えないのかを考える。ここでは明らかに背が高いのは180cm、明らかに背が低いのは160cmとする。そして、この2点を結ぶ線を引き、これにより背が『高い』度合を表す。

図C-11 背が『高い』のファジィ集合
この線のことをメンバーシップ関数といい、グラフの縦軸の数値をグレード値という。グレード値は0から1の間の数値で、対象に属する割合と考える。例えば、170cmの場合、グレード値は0.5となり、ほどほどに背が高いという表現ができる。それに対し、クリスプ集合であらわそうとすると、どこか一つの数値を境にして、それを越えるか越えないかで背が“高い”かどうかを分けることができない。例えば180cmを境目にするとき、180cmでは背が高いといえるのに対し、179cmでは背が高いといえないことがになる。この例ではメンバーシップ関数を曲線で表したが、一般的には計算を簡単にするために三角形のファジィ集合がよく用いられる。身長を表すメンバーシップ関数を三角形のファジィ集合の例を図C-12に示す。

C.2.2 ファジー推論の概要

コンピュータに推論を行わせるには様々な手法がある。ファジー推論はその中の1つである。特徴としては推論機械にファジーの考え方を含めたことで、前提条件と答えとの関係に幅を持たせることができる。しかし、ファジー推論はあいまいさを扱う推論なので、常にはっきりとした（クリスプな）内容の推論しか行わないのであれば、意味を成さない。以下では、ファジー推論の概要を説明する。

ファジー推論は命題論理の演算に、あいまいさ（ファジー性）を用いることにより拡張を行った推論法と言える。そこで、まず命題論理について簡単に説明する。命題論理では、いわゆる「三段論法」により推論を行う。具体的手順としては、まず前提条件として、「常識的知識」と「現在の条件」を用意する。そして、帰納的に答えを導く。例えば

(1) トマトが赤ければ、トマトは熟している。
(2) トマトが赤い。
--
(3) トマトは熟している。

のように答えが導かれる。このように書くと当たり前のことをしているだけのようだがコンピュータに推論を行わせるにはこのように、はっきりとした形で示す必要がある。
ファジィ推論では「トマトが赤ければ」の「赤い」、「トマトは熟している」の「熟している」について、ファジィ集合を用いて、その度合を表現する。つまり、トマトの赤い度合が0.8ならば、トマトの熟している度合は0.8であるといった表現も可能となる。

ファジィ推論では、このような推論を IF-THEN 形式的ルールにして表現する。つまり、
『 IF トマトが赤い THEN トマトは熟している 』

一般形にすると、
『 IF x is A THEN y is B 』
となる。「x is A」は「前件部」、「y is B」は「後件部」という。

ファジィ推論の特徴として前件部の条件を増やすことができる。具体的には、
『 IF (x1 is A1) AND (x2 is A2) THEN y is B 』

のようになる。この場合は、前件部を二つとしたが、いくつでも増やすことができる。このことにより、「トマトが赤く、かつ、柔らかければ、トマトはとても熟している」などといった表現も可能になる。ファジィ推論が特に有効なのは、このように複数の前件部条件から解を求めるような場合だといえる。

上記の前件部が2つのルールに対して、「赤い」の度合が0.8で「柔らかい」の度合が0.6だったとする。前件部の演算はAND演算を行い、2つの値の小さい方をとって、前件部のグレード値は0.6となり、熟している度合は0.6となる。詳細は図C-13に示す。

ルールが多い場合には、後件部から求まる解が複数ある。このようなときには、解の合成を行う必要があり合成の手法はいろいろあるが、代表的なところではMin-Max法、代数積-加算重心法、簡略化推論法などがある。次項ではMin-Max法について説明する。

C.2.3 Min-Max法

Min-Max法[36]は、後件部のグレード値（前件部の解）を求める際にはAND演算（Min）を用い、後件部の重心を求める際にはOR演算（Max）を用いる。以下に例を挙げる。

トマトの赤さと柔らかさから、どのくらい熟しているかを求める問題を考える。ここで、各ファジィ集合は図C-14のように与えられているとする。
ここで，BG=big，MD=middle，SM=small，とする。BG は赤さ，柔らかさなどが大きい（強い），MD は中ぐらい，SMは小さい（弱い）ということである。例えば，赤さのファジィ集合では，BG=とても赤い，MD=やや赤い，SM=あまり赤くない，といったように考える。それぞれ，隣の集合と重なっているのは中間ぐらいのときなどをはっきりと分けてしまわず両方の属性を持たせるようにして，よりファジィ的な扱いをしやすいようにするためである。

ルール 1: IF (赤さ is BG) AND (柔らかさ is BG) THEN 熟度 is BG
ルール 2: IF (赤さ is MD) AND (柔らかさ is MD) THEN 熟度 is MD
ルール 3: IF (赤さ is SM) AND (柔らかさ is SM) THEN 熟度 is SM

上記のような簡単なルールが与えられている場合，赤さの度合が 0.8，柔らかさの度合が 0.6 としたときの熟度を求める。
まず，赤さのファジィ集合について調べる。ここで，赤さの度合は 0.8 と与えられているので，図 C-14 を使い，赤さの BG，MD，SM の集合の適合度を求める。
BG については適合度が 0.6 となり，MD については適合度が 0.4 となる。また，SM については集合の範囲に入らないので 0 となる。
次に，柔らかさのファジィ集合についても求める。柔らかさの度合は 0.6 なので，BG の適合度は 0.2，MD の適合度は 0.8，SM の適合度は 0 となる。
これで前件部の条件は全て得られたので各ルールについて AND 演算（Min）を行う。

ルール 1 の前件部 0.6 AND 0.2 = 0.2
ルール 2 の前件部 0.4 AND 0.8 = 0.4
ルール 3 の前件部 0 AND 0 = 0

したがって，各ルールの後件部より熟度については以下のようになる。

ルール 1 より，BG = 0.2
ルール 2 より，MD = 0.4
ルール 3 より，SM = 0
最後にこれらの集合 OR 演算 (Max) を施して得られたファジィ集合の重心をとって解とする。Min-Max 法では、後件部のファジィ集合を前件部から求められたグレード値で切り取って台形型のファジィ集合を作り、この集合の和の重心を取る。重心をとる演算は求める重心を \(y_0 \)、横軸を \(y \)、合成したファジィ集合を \(\mu(y) \) とすると

\[
y_0 = \frac{\int y \cdot u(y) dy}{\int u(y) dy}
\]

となる。これを使い、重心は 0.5625 となる。よって、この例での熟度は 0.5625 となる。

図 C-15 Min-Max 法

ファジィ推論では、単純なルールをいくつか用意することで、中間にあるような値についても推論を行って解を求めることができる。また、ルール数を増やすことで推論の精度を上げていくことができる。このことは、裏返すとルールがいくつか欠損したとしても、精度が落ちるだけで推論を続けることができるということを示している。
付録 D 走行危険度を考慮した電動車いすのファジィ推論型障害物回避制御

D.1 背景・目的

本章は、数多く報告されているジョイスティック型電動車いすの衝突事故を防ぐために、ジョイスティック操作入力、障害物との距離、車いすの速度などの情報に基づくファジィアルゴリズムを用いた障害物回避制御法を提案し、実機を用いた走行実験を通してその有効性を示すものである。

図D-1に示す電動車いすは、搭乗者の手元にあるジョイスティック操作入力に基づき、走行速度や方向に関する意思を読み取り、左右輪の電気モータにより走行を行う移動支援機器であり、高齢者や障害者にとって行動範囲を広げるものとして広く使用されている。特に少子高齢化が進む今日では、その重要性も高まっていると言える。

このような背景に基づき、電動車いすの多機能化、高性能化に関する研究も盛んに行われてきている。電動車いすについては、操作者が入力操作を行う装置やインターフェイスなどによっていくつかの分類がなされる。一つ目は上述のように手元のジョイスティック操作により速度や方向に関する指令を与えて走行するジョイスティック型電動車いすである[D-1]-[D-3]。二つ目として、車いす後部から介助者が操作を行う形態で、電動のアシスト機能を備えた車いすもある[D-4]-[D-6]。また、操作者がハンドリムを漕ぎ、その力を増幅するためのアシストトルクを生成する電動アシスト型の車いすについても研究が行われている[D-7]-[D-15]。いずれのタイプの車いすにおいても、安全
性や操作性, 段差踏破走行, その他様々な環境外乱への対応など, 特にモータ駆動制御技術をベースとして, 使用者である人間へのより良い支援を目指した様々な取り組みが行われている. この他にも, 手元のハンドルとレバーで操作する高齢者用電動かごなども存在し, 少子高齢化を迎えた現代社会において重要な支援技術となっている.

電動車いすにおいて重視すべき要素の一つとして操作性が挙げられる. 電動車いすの需要は年々増加しているが, 高齢者は視界が狭いことや, ジョイスティック操作のミスにより, 人混みや曲がり角での接触事故も増加してきている. 警察庁調べによる全国の電動車いすの事故発生件数は, 平成20年が232件であり, 平成10年と比較すると100件近く増加している. 特に人混みや曲がり角では細かなジョイスティック操作が必要であり, 高齢者にとっては操作が難しいと想像できる. また, 操作者の動作のイメージと実際の車いすの挙動に多少のズレが存在しうることも事故の原因の一つと推測できる.

本章は, このようなことを考慮した上で, 歩道や病院内の通路など様々な状況や走行環境に対して, 操作者の意志を反映しつつも障害物を回避しながら走行するための一制御手法を提案し, 実験的な検討を行うものである.

D.2 ファジィアルゴリズムによる障害物回避走行制御法

D.2.1 ファジィアルゴリズムの適用

電動車いすの障害物回避制御を設計する上では, 操作者がどのように走行したいのかを示すジョイスティック操作入力情報と, 障害物を安全に回避するために必要な障害物との距離, 車いすの速度情報などに注目することが重要である. 障害物との距離は超音波センサ, 赤外線センサ, レーザセンサなどで測定が可能である. また, 人間が電動車いすの操作に対して経験的に内部に持っている走行制御パターンを用いることで, 人間 - 車いす系の複雑なモデリングをシンプルな制御系により実現したい. そこで本章では, 上記のような重要な情報に基づき, シンプルな制御系設計を行うことを目的とし, 以下に述べるような超音波センサによる距離測定に基づくファジィアルゴリズムを用いた走行制御法を提案する.

D.2.2 目標走行方向の推定

ジョイスティック操作に関しては、スティックを倒した方向とその大きさの二つの情報が存在し、それぞれ走行方向と走行速度に関する操作者の意思が含まれていると考えられる。そこで、$T_j = (\theta_{\text{ref}}, v_{\text{ave}})$と表現し、\(\theta_{\text{ref}} \) はジョイスティックを倒した方向、つまり操作者が望む走行方向を示す「操作指令方向」、\(v_{\text{ave}} \) はジョイスティックを倒した角度から定数倍することで得られる車いすの平均指令速度であるとする。ここで、操作者がどの方向に進みたいのかを示すジョイスティック指令 \(\theta_{\text{ref}} \) と、超音波センサによって計測された車いすと障害物との距離 \(d \) をもとに、障害物を回避するための車いすの暫定的な走行指令方向 \(\theta_{\text{d}} \) をファジイ推論(A)によって決定する。\(\theta_{\text{d}} \) を「ファジイ指令方向」と呼ぶこととする。
D.2.3 走行危険度の考慮

次に、操作指令方向 θ_{ref} とファジー指令方向 θ_d の差 θ_e と電動車いすの左右輪の平均速度 v をもとに走行危険度 r をファジー推論(B)により決定する。θ_e はファジー推論による指令方向と操作者の行きたい方向とのズレを示す情報であり、このズレが大きいということは、操作者の行きたい方向に障害物があるために障害物を回避する方向を指示したということである。また、車いすの左右輪の平均速度 v は車いすの挙動を示す重要な情報であることから、θ_e と v をファジー推論(B)の入力変数として用い、走行危険度 r を求める。これは今の走行がどれだけ危険なのかを示す値であり、電動車いすの走行方向を、操作者の意志による方向 θ_{ref} とファジー推論(A)による方向 θ_d のどちらを優先するかを決める重要なパラメータである。「最終指令方向」である θ_d の決定に際しては式 (D-1) のように、走行危険度が大きいときにはファジー指令方向 θ_d が重視され、また小さいときには操作指令方向 θ_{ref} を重視するようにして、操作者の意思を反映しつつも、衝突事故などの最悪の場合を回避するため危険度の大きいときは操作者の意思よりも環境情報を重視して走行させる。

$$\theta'_d = r \theta_d + (1 - r) \theta_{ref} \tag{D-1}$$

さらに走行危険度に応じて指令速度を減少させることにより障害物を安全に回避できるようにする。「最終指令速度」である v_{avenew} は式(D-2)のように、走行危険度が大きくなるほどジョイスティックによる指令速度 v_{ave} より遅くなる。

$$v_{avenew} = (1 - 0.5r)v_{ave} \tag{D-2}$$

走行方向と速度が変化することにより危険を操作者に知らせることができ、操作者に危険を回避するための操作を促すこともできる。

最終指令方向 θ'_d へ走行するために左右輪の速度を決定する左右輪の速度比 α を求める。最終指令速度 v_{avenew} と速度比 α から最終的な左右輪の指令速度 v_{ref} を式(D-3), (D-4) より計算する。そして左右輪の実際の速度 \dot{v}、\dot{v}' をもとにPID制御によって左右輪のモータへの指令値が決まる。

$$v_{ref}' = \alpha * v_{avenew} \tag{D-3}$$

$$v_{ref}' = (1 - \alpha) * v_{avenew} \tag{D-4}$$

D.2.4 ファジー制御系の設計

最初に、目標走行方向であるファジー指令方向 θ_d を決定する「ファジー推論(A)」を設計する。二つの入力情報であるジョイスティック指令 θ_{ref} と障害物との距離 d に対する
るファジィ変数の設計を行う。図 D-3 (a)はジョイスティック指令 \(\theta_{ref} \)に関する三角型ファジィ変数である。\(\theta_{ref} \)の値に応じて 0 から 1 までのグレード値をとる五つの変数をそれぞれ LB(Left-Big), LM(Left-Middle), ZO(Zero), RM(Right-Middle), RB(Right-Big)とする。ZO は安定して直進走行するため、走行中の振動などによって生じるジョイスティック操作のブレを考慮して範囲を広くした。LB は操作者が大きく左に旋回したいことを示す。また、図 D-3 (b)は障害物との距離 \(d \)に関する三角型ファジィ変数であり、S(Short), M(Middle), L(Long)の各変数が 0 から 1 までのグレード値をとり、S は障害物との距離が短いことを示す。設置するセンサの数をできるだけ少なくするために超音波センサは図 D-6のように、センサ 2 と 3 を前方方向に、センサ 1 と 4 をそれぞれ前方斜め 45[deg]の方向に向かって設置することとする。

(三角型ファジィ変数)

\begin{center}

図 D-3

(a) ファジィ変数 \(\theta_{ref} \)

(b) ファジィ変数 \(d \)

図 D-4 に \(\theta_{ref}, d \) に応じて \(\theta_d \) を決める IF-THEN 型ファジィルールを示す。ファジィルールは、ジョイスティックを操作した方向にある超音波センサの距離 \(d \)が短い（障害物がある）とき、障害物とは反対方向へファジィ指令方向 \(\theta_d \)を設定する。ファジィ指令方向 \(\theta_d \)については、LB(Left-Big), LM(Left-Middle), ZO(Zero), RM(Right-Middle), RB(Right-Big)のシンボルを用いる。図 D-6に各走行方向とファジィ変数を示す。なお、図 D-4の空欄の部分はファジィ制御をせず、ジョイスティック指令をそのまま最終指令方向とする。これは、空欄の部分では障害物との距離が長いため、人の意志を優先したためである。
最後に、Mamdani の MIN-MAX 重心法 [D-21]により θ_d を導く。ルールにより得られた五つのグレート値に対し図 D-5 のようなシングルトン型を適用し、式 (D-5) より θ_d を求める。

$$\theta_d = \frac{60 \times LB + 75 \times LM + 90 \times ZO + 105 \times RM + 120 \times RB}{LB + LM + ZO + RM + RB} \quad (D-5)$$
ファジィ指令方向 θ_d を求めるシングルトンの範囲を 60～120[deg]と狭くしたのは、障害物回避のときに急激な方向転換をさけるためである。操作者の意図しない方向への急激な方向転換は、操作者へ混乱を与え誤操作を招く可能性がある。また急激な方向転換は、乗り心地の低下にも繋がる。

次に、走行危険度 r を決定する「ファジィ推論(B)」を設計する。二つの入力情報である操作指令方向とファジィ指令方向との差 θ_g、車いすの左右輪の平均速度 v に対するファジィ変数の設計を行う。図 D-7 (a)は操作指令方向とファジィ指令方向との差 θ_g に関する三角型ファジィ変数であり、SS(Small-Small), S(Small), M(Middle), B(Big), BB(Big-Big)の各変数が 0 から 1 までのグレード値をとり、SS は差が小さいことを示す。図 D-7 (b) は車いすの左右輪の平均速度 v に関する三角型ファジィ変数であり、SS(Small-Small), S(Small), M(Middle), B(Big), BB(Big-Big)の各変数が 0 から 1 までのグレード値をとり、SS は車いすの速度が遅いことを示す。

図 D-6 距離センサの配置とファジィ変数

図 D-7 三角型ファジィ変数
図 D-8 ファジィ制御ルール

図 D-9 シングルトン型ファジー推論

図 D-8 に θ_g, v に応じて走行危険度 r を決める IF-THEN 型ファジィルールを示す。走行危険度 r については、SS(Small-Small), S(Small), M(Middle), B(Big), BB(Big-Big)のシンボルを用いており、BB の場合は走行危険度が大きい、つまり障害物が近いのにもかかわらず車いすの速度が速いなど今の走行が危険であるということを示している。

最後に Mamdani の MIN-MAX 重心法[D-21]により r を導く。ルールにより得られた五つのグレート値に対し図 D-9 のようなシングルトン型を適用し、式(D-6)より r を得る。

\[
 r = \frac{0 \times SS + 0.25 \times S + 0.5 \times M + 0.75 \times B + 1 \times BB}{SS + S + M + B + BB}
\]

(D-6)
例えば、センサ2や3の障害物との距離dがSの場合は車いすと障害物が近いため、
目標走行方向θdのファジィルールはRBかLBとなり、障害物を回避しようと車いすは
大きく曲がることになる。また、θrefがLBで、dがM(センサ1)－S(センサ2)の場合、
つまり、操作者は左に大きく旋回したくても車いすの左前方に障害物がある場合は目標
走行方向θdのファジィルールはRBを出力し、車いすは障害物を回避するために大きく
右に旋回することになる。この場合はθrefがLBで、θdはRBとなるので、θgがBBとな
る。もし車いすの速度も速い、つまりvもBBなら走行危険度rのファジィルールはBB
を出力、提案手法は人の意志よりも制御を優先し、車いすの速度を遅くする、このよ
うに人の意志に反して走行する場合もあるが、障害物を確実に回避し事故を防ぐように設
計されている。

D.3 実機による実験的検討

D.3.1 実験装置の概要

本実験で用いる電動車いすの実験機を図D-10と図D-11に示す。ヤマハ製JWIをベ
ースに、ART-Linuxを搭載したPCでリアルタイム制御を行う実験環境を構築した。左
右輪に搭載された二つのロータリエンコーダによって回転角度を測定し、車いすの速度
を計算する。図D-6のように配置された四つの超音波センサ（IDEC株式会社：
SA6A-L2K4S）の出力信号とジョイストックからの信号はPCに取り込まれ制御系の
入力となり、PCからはモータドライバへの指令信号が送られる。

図D-10 実験装置システム概要
D.3.2 直進路での障害物回避実験

図 D-11 の実機を用いた実験により、本手法の有効性を検討する。最初に、図 D-12 に示すような三つの障害物がある直進路における障害物回避実験について示す。もし、図 D-12 のような走行環境で操作者が操作を誤ってしまった場合には車いすが障害物に衝突してしまうものと考えられる。なお、この実験ではジョイスティックの操作は前進方向（θ_{ref} = 90[deg]）に固定したままとする。
図 D-13 実験結果（走行軌道）

図 D-13 に本実験の走行軌道の結果を示す。ジョイスティック操作は前進方向一定であるにもかかわらず、障害物を正確に回避できていることがわかる。また、図 D-14 (a) に左右輪の速度 v と走行危険度 r の実験結果を示す。提案手法を用いなければ左右輪の速度は等しくなるはずだが、提案手法を用いたことにより障害物を回避するために左右輪の速度が適切に調整されている。また、障害物に応じて走行危険度が高い値になっており、走行危険度が高いときには左右輪の速度も調節されていることがわかる。なお、この実験では走行危険度の値が三回ともほぼ同じ値であるが、今回のジョイスティックの操作が一定であり、θ_g の値と車いすの速度が毎回ほぼ同じであったためである。

図 D-14 (b) に四つの超音波センサの出力を示す。図が示すように障害物が近づいたときには超音波センサの出力は減少しており、時間 $t = 2\sim 10$ [s] では一つ目の障害物により
センサ 3 と 4 の値が減少し, また \(t = 8 \sim 23 \) では二つ目の障害物によりセンサ 1 と 2 の値が減少し, \(t = 17 \sim 25 \) では三つ目の障害物によりセンサ 3 と 4 の値が再び減少していることがわかる. なお, \(t = 16 \sim 23 \) にセンサ 1 の値が低いままなのば, 二つ目の障害物が長くセンサが反応し続けたためである. 以上のことから, 障害物に対する距離を正確に測定できており, 図 D-14 (a) と比較すればわかるように, 障害物との距離が近いときには左右輪の速度が調整され, 走行危険度が高くなっていることがわかる.

(a) 走行危険度と速度

(b) 距離センサ

図 D-14 走行実験結果
D.3.3 曲がり角での障害物回避実験

次に、図 D-15 に示すような曲がり角での実験を行う。もし車いすが何も制御されていなければ、車いすは曲がり角の死角にいる人と衝突してしまうものと考えられる。なお、今回は時計回りに走行し、ジョイスティックの操作は曲がるまでは前進、曲がるときは右旋回、曲があった後は前進である。

図 D-15 実験用テストコース

図 D-16 に提案手法を用いた場合の走行軌道結果、図 D-17(a)に左右輪の速度 v と走行危険度 r の結果、図 D-17(b)に超音波センサの出力を示す。図 D-16 が示すように、提案手法を用いることで死角にいる人と衝突することなく右旋回できていることがわかる。

図 D-16 実験結果（走行軌道）
図 D-17 (a)において \(t = 5 \sim 16 \) [s] では右輪の速度が小さくなっていることから操作者がジョイスティックを右方向に操作していることがわかる。また生成された走行危険度の値により車いすの左右輪速度が下がっていることがわかる。

図 D-17 (b) にセンサ 3 と 4 の出力を示しているが、図からわかるように障害物によって \(t = 7 \sim 12 \) [s] におけるセンサ 4 の値が小さくなっている。図 D-17 (a) と比較すればわかるように、センサ 4 の値が小さいとき、つまり障害物に近いときは走行危険度が 0 以上の値となっている。人の意志を反映しつつも、車いすは障害物を確実に回避しながら走行ができている。なお、この実験では左側に障害物が無いためセンサ 1 と 2 の値は載せていない。

図 D-17 走行実験結果
これらはあくまで実験結果の一例であり、ジョイスティックの操作の仕方や操作者の熟練度なども考慮した上での検証が必要である。

D.3.4 考察

本章では、ファジィアルゴリズムを用いた電動車いすの障害物回避制御法を提案し、実機による実験的検討を行った。ファジィ推論を用いることにより人間の経験的な知識や感覚を直接制御則に反映させられ、特にこのような人間機械協調システムにおける適用は人間の操作感に合うものになる。例えば、操作者が望む走行方向は一定角度での指定は難しく、「左方向」や「大きく右方向」のように指定できるファジィ推論は、人間が操作する機器の制御に効果的であると考えられる。しかし、実際の使用場面を想定した上ではいくつかの課題が存在する。以下にそのような今後の課題、問題点、可能性などをまとめる。

・ 今回はジョイスティック操作、障害物との距離、指令方向と走行方向の差、車いすの速度に注目しファジィアルゴリズムを設計したが、今後はこれら以外の情報にも目を向ける必要がある。また、実際に使用する場合にはファジィ変数や様々なパラメータの値を自動的に変化させていく必要もある。操作者の操作の癖や外部状況から制御システムが自動的に直進や旋回、障害物などの走行状況や環境を判断してパラメータを可変的に調整することなども考えられる。これは様々な状況や環境における多くの実験的検討を通して明らかになるものと考えられ、今後の重要な課題となる。

・ 本章では走行危険度に応じて速度を変えているが、急に人が飛び出すなどの場合には急停止させるような動作も必要であると考えられる。さらに、走行危険度により人の意志と制御のどちらを優先させるかを決めているが、障害物回避するために人の意志に反した走行をする場合もあり、これは速度変化も含めて乗り心地に大きく関係することである。今後は乗り心地にも注目し、走行危険度に応じた速度変化の方法や人の意志と制御の優先の仕方を考え、操作者にとって違和感のない走行を実現することも重要な課題となる。

・ 今回は設置する距離センサの数を最少にするために図 D-6 のように配置したが、そのセンサの種類、配置方法や数は、例えば路面上の段差や溝なども検出して危険性に対応するなど様々な走行環境への考慮も必要となり、今後も検討が必要である。

・ 今回は直進路と曲がり角で実験的検討を行ったが、今後はさらに多くの状況や環境で走行実験を行う必要がある。本手法は走行環境と操作者の意志の両方を考慮しているため、どのような道でもある程度の効果を発揮すると推測できるが、砂利道などの外乱路面でも安全で操作者の意思通りの走行が求められる。
D.4 まとめ
本章では、ジョイスティック操作、障害物との距離、車いすの速度等の情報に基づくファジィアルゴリズムによる電動車いすの障害物回避制御法を提案し、直進路や曲がり角において障害物を回避した安全な走行が実現できることを、実験的検討を通して示した。今後は前章で述べたようないくつかの課題、さらに多くの状況や環境、被験者による評価実験などを交えて手法の検討を進める予定である。

D.5 参考文献

